L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (−1.21 + 1.87i)5-s + (0.576 + 2.58i)7-s + (−0.707 − 0.707i)8-s + (−2.12 − 0.686i)10-s + (−1.41 + 0.819i)11-s + (1 − i)13-s + (−2.34 + 1.22i)14-s + (0.500 − 0.866i)16-s + (−2.23 − 0.599i)17-s + (0.274 + 0.158i)19-s + (0.111 − 2.23i)20-s + (−1.15 − 1.15i)22-s + (−8.03 + 2.15i)23-s + ⋯ |
L(s) = 1 | + (0.183 + 0.683i)2-s + (−0.433 + 0.249i)4-s + (−0.542 + 0.839i)5-s + (0.217 + 0.976i)7-s + (−0.249 − 0.249i)8-s + (−0.672 − 0.216i)10-s + (−0.427 + 0.246i)11-s + (0.277 − 0.277i)13-s + (−0.626 + 0.327i)14-s + (0.125 − 0.216i)16-s + (−0.542 − 0.145i)17-s + (0.0629 + 0.0363i)19-s + (0.0250 − 0.499i)20-s + (−0.246 − 0.246i)22-s + (−1.67 + 0.448i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 + 0.0926i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.995 + 0.0926i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0429069 - 0.923808i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0429069 - 0.923808i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 - 0.965i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.21 - 1.87i)T \) |
| 7 | \( 1 + (-0.576 - 2.58i)T \) |
good | 11 | \( 1 + (1.41 - 0.819i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1 + i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.23 + 0.599i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.274 - 0.158i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (8.03 - 2.15i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 1.19T + 29T^{2} \) |
| 31 | \( 1 + (-1.5 - 2.59i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (6.83 - 1.83i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 2.82iT - 41T^{2} \) |
| 43 | \( 1 + (-5.63 + 5.63i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.63 - 6.10i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (3.01 - 11.2i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (1.04 + 1.80i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.158 + 0.274i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.963 - 3.59i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 7.51iT - 71T^{2} \) |
| 73 | \( 1 + (-12.7 - 3.41i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-8.34 - 4.81i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-10.0 - 10.0i)T + 83iT^{2} \) |
| 89 | \( 1 + (-7.74 + 13.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (9.15 + 9.15i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04579601211366293034393586831, −10.18248068037878349852825685664, −9.132928345611662137977099782639, −8.189744808118535034852160121973, −7.58829584621363009481007813314, −6.51500381130091999123642928258, −5.77026445076895154952366666437, −4.67911961584157027901189762689, −3.51604535573328213237013121240, −2.34175853741531241804832487870,
0.46581695605723657178385296266, 1.95048050698717068642828056435, 3.64780863326547371541027080302, 4.30916700146651371531883461281, 5.25247319415287159684768082774, 6.50553387799241937713561282608, 7.77597168311627908608247025306, 8.384952728725721198869495879500, 9.374837658425653020022400154605, 10.32906573761971418420853841161