Properties

Label 2-630-1.1-c5-0-7
Degree $2$
Conductor $630$
Sign $1$
Analytic cond. $101.041$
Root an. cond. $10.0519$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s + 25·5-s + 49·7-s − 64·8-s − 100·10-s + 267·11-s − 1.08e3·13-s − 196·14-s + 256·16-s + 513·17-s − 802·19-s + 400·20-s − 1.06e3·22-s + 1.29e3·23-s + 625·25-s + 4.34e3·26-s + 784·28-s − 1.77e3·29-s − 2.58e3·31-s − 1.02e3·32-s − 2.05e3·34-s + 1.22e3·35-s + 1.38e4·37-s + 3.20e3·38-s − 1.60e3·40-s + 1.19e4·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s − 0.353·8-s − 0.316·10-s + 0.665·11-s − 1.78·13-s − 0.267·14-s + 1/4·16-s + 0.430·17-s − 0.509·19-s + 0.223·20-s − 0.470·22-s + 0.508·23-s + 1/5·25-s + 1.26·26-s + 0.188·28-s − 0.392·29-s − 0.482·31-s − 0.176·32-s − 0.304·34-s + 0.169·35-s + 1.66·37-s + 0.360·38-s − 0.158·40-s + 1.10·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(630\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(101.041\)
Root analytic conductor: \(10.0519\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 630,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.605820458\)
\(L(\frac12)\) \(\approx\) \(1.605820458\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
3 \( 1 \)
5 \( 1 - p^{2} T \)
7 \( 1 - p^{2} T \)
good11 \( 1 - 267 T + p^{5} T^{2} \)
13 \( 1 + 1087 T + p^{5} T^{2} \)
17 \( 1 - 513 T + p^{5} T^{2} \)
19 \( 1 + 802 T + p^{5} T^{2} \)
23 \( 1 - 1290 T + p^{5} T^{2} \)
29 \( 1 + 1779 T + p^{5} T^{2} \)
31 \( 1 + 2584 T + p^{5} T^{2} \)
37 \( 1 - 13862 T + p^{5} T^{2} \)
41 \( 1 - 11904 T + p^{5} T^{2} \)
43 \( 1 + 598 T + p^{5} T^{2} \)
47 \( 1 - 17019 T + p^{5} T^{2} \)
53 \( 1 + 27852 T + p^{5} T^{2} \)
59 \( 1 + 30912 T + p^{5} T^{2} \)
61 \( 1 + 1780 T + p^{5} T^{2} \)
67 \( 1 - 25052 T + p^{5} T^{2} \)
71 \( 1 - 51984 T + p^{5} T^{2} \)
73 \( 1 - 47690 T + p^{5} T^{2} \)
79 \( 1 + 102121 T + p^{5} T^{2} \)
83 \( 1 - 83676 T + p^{5} T^{2} \)
89 \( 1 - 32400 T + p^{5} T^{2} \)
97 \( 1 + 148645 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.543521516468268847545391241868, −9.279112150068733273358364179593, −8.008739699851563389654838641839, −7.33983258725116940493253962447, −6.38818975600404573542667400059, −5.35049894994401969123497645093, −4.30475509881734607412857852035, −2.79935584785366393096708195950, −1.87945091548950276710804101626, −0.67540366921610920140395143685, 0.67540366921610920140395143685, 1.87945091548950276710804101626, 2.79935584785366393096708195950, 4.30475509881734607412857852035, 5.35049894994401969123497645093, 6.38818975600404573542667400059, 7.33983258725116940493253962447, 8.008739699851563389654838641839, 9.279112150068733273358364179593, 9.543521516468268847545391241868

Graph of the $Z$-function along the critical line