Properties

Label 2-630-1.1-c5-0-49
Degree $2$
Conductor $630$
Sign $-1$
Analytic cond. $101.041$
Root an. cond. $10.0519$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 16·4-s + 25·5-s + 49·7-s + 64·8-s + 100·10-s + 154·11-s − 404·13-s + 196·14-s + 256·16-s − 2.18e3·17-s − 2.49e3·19-s + 400·20-s + 616·22-s + 3.47e3·23-s + 625·25-s − 1.61e3·26-s + 784·28-s − 5.95e3·29-s − 6.41e3·31-s + 1.02e3·32-s − 8.72e3·34-s + 1.22e3·35-s − 1.11e4·37-s − 9.97e3·38-s + 1.60e3·40-s − 7.83e3·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s + 0.353·8-s + 0.316·10-s + 0.383·11-s − 0.663·13-s + 0.267·14-s + 1/4·16-s − 1.83·17-s − 1.58·19-s + 0.223·20-s + 0.271·22-s + 1.36·23-s + 1/5·25-s − 0.468·26-s + 0.188·28-s − 1.31·29-s − 1.19·31-s + 0.176·32-s − 1.29·34-s + 0.169·35-s − 1.33·37-s − 1.12·38-s + 0.158·40-s − 0.727·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(630\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(101.041\)
Root analytic conductor: \(10.0519\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 630,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
3 \( 1 \)
5 \( 1 - p^{2} T \)
7 \( 1 - p^{2} T \)
good11 \( 1 - 14 p T + p^{5} T^{2} \)
13 \( 1 + 404 T + p^{5} T^{2} \)
17 \( 1 + 2182 T + p^{5} T^{2} \)
19 \( 1 + 2494 T + p^{5} T^{2} \)
23 \( 1 - 3472 T + p^{5} T^{2} \)
29 \( 1 + 5958 T + p^{5} T^{2} \)
31 \( 1 + 6410 T + p^{5} T^{2} \)
37 \( 1 + 11150 T + p^{5} T^{2} \)
41 \( 1 + 7834 T + p^{5} T^{2} \)
43 \( 1 - 16236 T + p^{5} T^{2} \)
47 \( 1 - 2800 T + p^{5} T^{2} \)
53 \( 1 - 30924 T + p^{5} T^{2} \)
59 \( 1 - 11536 T + p^{5} T^{2} \)
61 \( 1 + 38834 T + p^{5} T^{2} \)
67 \( 1 + 48756 T + p^{5} T^{2} \)
71 \( 1 - 77882 T + p^{5} T^{2} \)
73 \( 1 + 47540 T + p^{5} T^{2} \)
79 \( 1 + 36480 T + p^{5} T^{2} \)
83 \( 1 + 25716 T + p^{5} T^{2} \)
89 \( 1 - 100826 T + p^{5} T^{2} \)
97 \( 1 + 89024 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.213780134245543314051092778328, −8.707836052886545068882791530478, −7.27971077651217620963119605991, −6.69681842170163765493429424063, −5.63836950642480222807778915389, −4.73029107932236324002035760521, −3.89966676292265086628198164618, −2.47839139944538123200680794222, −1.73189293514939997114613565226, 0, 1.73189293514939997114613565226, 2.47839139944538123200680794222, 3.89966676292265086628198164618, 4.73029107932236324002035760521, 5.63836950642480222807778915389, 6.69681842170163765493429424063, 7.27971077651217620963119605991, 8.707836052886545068882791530478, 9.213780134245543314051092778328

Graph of the $Z$-function along the critical line