Properties

Label 2-630-1.1-c3-0-6
Degree $2$
Conductor $630$
Sign $1$
Analytic cond. $37.1712$
Root an. cond. $6.09681$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s + 5·5-s + 7·7-s − 8·8-s − 10·10-s − 30·11-s − 34·13-s − 14·14-s + 16·16-s − 30·17-s + 128·19-s + 20·20-s + 60·22-s + 210·23-s + 25·25-s + 68·26-s + 28·28-s − 216·29-s + 128·31-s − 32·32-s + 60·34-s + 35·35-s + 2·37-s − 256·38-s − 40·40-s − 234·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s − 0.353·8-s − 0.316·10-s − 0.822·11-s − 0.725·13-s − 0.267·14-s + 1/4·16-s − 0.428·17-s + 1.54·19-s + 0.223·20-s + 0.581·22-s + 1.90·23-s + 1/5·25-s + 0.512·26-s + 0.188·28-s − 1.38·29-s + 0.741·31-s − 0.176·32-s + 0.302·34-s + 0.169·35-s + 0.00888·37-s − 1.09·38-s − 0.158·40-s − 0.891·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(630\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(37.1712\)
Root analytic conductor: \(6.09681\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 630,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.496324736\)
\(L(\frac12)\) \(\approx\) \(1.496324736\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
3 \( 1 \)
5 \( 1 - p T \)
7 \( 1 - p T \)
good11 \( 1 + 30 T + p^{3} T^{2} \)
13 \( 1 + 34 T + p^{3} T^{2} \)
17 \( 1 + 30 T + p^{3} T^{2} \)
19 \( 1 - 128 T + p^{3} T^{2} \)
23 \( 1 - 210 T + p^{3} T^{2} \)
29 \( 1 + 216 T + p^{3} T^{2} \)
31 \( 1 - 128 T + p^{3} T^{2} \)
37 \( 1 - 2 T + p^{3} T^{2} \)
41 \( 1 + 234 T + p^{3} T^{2} \)
43 \( 1 - 236 T + p^{3} T^{2} \)
47 \( 1 + 132 T + p^{3} T^{2} \)
53 \( 1 - 168 T + p^{3} T^{2} \)
59 \( 1 + 12 T + p^{3} T^{2} \)
61 \( 1 - 758 T + p^{3} T^{2} \)
67 \( 1 - 164 T + p^{3} T^{2} \)
71 \( 1 - 306 T + p^{3} T^{2} \)
73 \( 1 - 866 T + p^{3} T^{2} \)
79 \( 1 + 304 T + p^{3} T^{2} \)
83 \( 1 + 720 T + p^{3} T^{2} \)
89 \( 1 + 186 T + p^{3} T^{2} \)
97 \( 1 - 1370 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03373922731553805026368713172, −9.412578330996854963133015864971, −8.525693542011127245839936530257, −7.52416824601442051684227239899, −6.94040657182254173447666084631, −5.56959649059124842271980092579, −4.90435017940667295959102338522, −3.18722725827681313496359430077, −2.15667994074621311416517497621, −0.805184597784559850149009036013, 0.805184597784559850149009036013, 2.15667994074621311416517497621, 3.18722725827681313496359430077, 4.90435017940667295959102338522, 5.56959649059124842271980092579, 6.94040657182254173447666084631, 7.52416824601442051684227239899, 8.525693542011127245839936530257, 9.412578330996854963133015864971, 10.03373922731553805026368713172

Graph of the $Z$-function along the critical line