L(s) = 1 | + (−2.02 − 3.51i)2-s + (−4.22 + 7.31i)4-s + (−4.96 − 8.59i)5-s + (−15.3 + 10.2i)7-s + 1.80·8-s + (−20.1 + 34.8i)10-s + (−6.76 + 11.7i)11-s + 18.5·13-s + (67.3 + 33.1i)14-s + (30.1 + 52.1i)16-s + (−46.8 + 81.1i)17-s + (−65.9 − 114. i)19-s + 83.7·20-s + 54.9·22-s + (−99.1 − 171. i)23-s + ⋯ |
L(s) = 1 | + (−0.716 − 1.24i)2-s + (−0.527 + 0.914i)4-s + (−0.443 − 0.768i)5-s + (−0.831 + 0.556i)7-s + 0.0799·8-s + (−0.636 + 1.10i)10-s + (−0.185 + 0.321i)11-s + 0.395·13-s + (1.28 + 0.633i)14-s + (0.470 + 0.815i)16-s + (−0.668 + 1.15i)17-s + (−0.796 − 1.37i)19-s + 0.936·20-s + 0.532·22-s + (−0.898 − 1.55i)23-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(−0.502−0.864i)Λ(4−s)
Λ(s)=(=(63s/2ΓC(s+3/2)L(s)(−0.502−0.864i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
−0.502−0.864i
|
Analytic conductor: |
3.71712 |
Root analytic conductor: |
1.92798 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(46,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :3/2), −0.502−0.864i)
|
Particular Values
L(2) |
≈ |
0.121917+0.211830i |
L(21) |
≈ |
0.121917+0.211830i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(15.3−10.2i)T |
good | 2 | 1+(2.02+3.51i)T+(−4+6.92i)T2 |
| 5 | 1+(4.96+8.59i)T+(−62.5+108.i)T2 |
| 11 | 1+(6.76−11.7i)T+(−665.5−1.15e3i)T2 |
| 13 | 1−18.5T+2.19e3T2 |
| 17 | 1+(46.8−81.1i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(65.9+114.i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(99.1+171.i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+188.T+2.43e4T2 |
| 31 | 1+(−41.9+72.6i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(40.0+69.4i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1−385.T+6.89e4T2 |
| 43 | 1+397.T+7.95e4T2 |
| 47 | 1+(−136.−235.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(18.4−32.0i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(−197.+342.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(6.73+11.6i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(170.−294.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1−211.T+3.57e5T2 |
| 73 | 1+(243.−420.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(146.+254.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+889.T+5.71e5T2 |
| 89 | 1+(−572.−991.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−1.38e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.92526650637352653425148796557, −12.62090867009729020666176706042, −11.36218725815393114791066713160, −10.32365868375636226618318831984, −9.087162956167776427077875260870, −8.405850679509479994543582591383, −6.27759854454298615848025521097, −4.16079453089427303410431204321, −2.34415855697655614374052881179, −0.20086376823137974777784405416,
3.51422044183024914902467371682, 5.88428862609934178753440745886, 6.97555830947702637776027866577, 7.82535496348198660611732035375, 9.217775467864867395277422385374, 10.34533317331687338839195578366, 11.68447718374594030103337769954, 13.32835903254211411786012015213, 14.43466423540980467507913519277, 15.51534352490788719004066879019