L(s) = 1 | + (5.11 − 8.85i)2-s + (−36.2 − 62.8i)4-s + (11.8 − 20.5i)5-s + (30.6 − 125. i)7-s − 414.·8-s + (−121. − 210. i)10-s + (232. + 403. i)11-s − 1.01e3·13-s + (−958. − 915. i)14-s + (−957. + 1.65e3i)16-s + (280. + 486. i)17-s + (693. − 1.20e3i)19-s − 1.72e3·20-s + 4.75e3·22-s + (2.05e3 − 3.56e3i)23-s + ⋯ |
L(s) = 1 | + (0.903 − 1.56i)2-s + (−1.13 − 1.96i)4-s + (0.212 − 0.367i)5-s + (0.236 − 0.971i)7-s − 2.28·8-s + (−0.383 − 0.665i)10-s + (0.580 + 1.00i)11-s − 1.67·13-s + (−1.30 − 1.24i)14-s + (−0.935 + 1.61i)16-s + (0.235 + 0.408i)17-s + (0.440 − 0.763i)19-s − 0.963·20-s + 2.09·22-s + (0.810 − 1.40i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 - 0.174i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.984 - 0.174i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.212439 + 2.41369i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.212439 + 2.41369i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-30.6 + 125. i)T \) |
good | 2 | \( 1 + (-5.11 + 8.85i)T + (-16 - 27.7i)T^{2} \) |
| 5 | \( 1 + (-11.8 + 20.5i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-232. - 403. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + 1.01e3T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-280. - 486. i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-693. + 1.20e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-2.05e3 + 3.56e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 - 2.38e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (1.47e3 + 2.55e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-4.95e3 + 8.58e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 4.47e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 5.18e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (1.56e3 - 2.70e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-570. - 988. i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.37e4 - 2.38e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.05e4 + 1.82e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-2.77e4 - 4.81e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 - 6.07e3T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-8.38e3 - 1.45e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-2.42e3 + 4.19e3i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 + 6.01e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (3.12e4 - 5.41e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 6.36e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.99533326876130253629722119211, −12.42402010727372423110855778097, −11.24976790682755540012549660378, −10.18020752216039981552873494098, −9.338492493681443476343619835912, −7.14391194419255722606568844502, −5.04437905922265098265754137820, −4.22625444851309139243255449987, −2.44655853350267015015861280444, −0.900750391196867634479850628379,
3.09802947825728272826189930714, 4.94743286478410068285764423294, 5.89551399692766232195554371632, 7.10360531170098358735588529716, 8.273118453698472296274698501049, 9.529528061078928753942223640790, 11.66297364727200424223477070071, 12.60242287644634859809301097199, 13.98362986695719015257406247753, 14.52998048216707017132261711824