L(s) = 1 | + (5.11 − 8.85i)2-s + (−36.2 − 62.8i)4-s + (11.8 − 20.5i)5-s + (30.6 − 125. i)7-s − 414.·8-s + (−121. − 210. i)10-s + (232. + 403. i)11-s − 1.01e3·13-s + (−958. − 915. i)14-s + (−957. + 1.65e3i)16-s + (280. + 486. i)17-s + (693. − 1.20e3i)19-s − 1.72e3·20-s + 4.75e3·22-s + (2.05e3 − 3.56e3i)23-s + ⋯ |
L(s) = 1 | + (0.903 − 1.56i)2-s + (−1.13 − 1.96i)4-s + (0.212 − 0.367i)5-s + (0.236 − 0.971i)7-s − 2.28·8-s + (−0.383 − 0.665i)10-s + (0.580 + 1.00i)11-s − 1.67·13-s + (−1.30 − 1.24i)14-s + (−0.935 + 1.61i)16-s + (0.235 + 0.408i)17-s + (0.440 − 0.763i)19-s − 0.963·20-s + 2.09·22-s + (0.810 − 1.40i)23-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(−0.984−0.174i)Λ(6−s)
Λ(s)=(=(63s/2ΓC(s+5/2)L(s)(−0.984−0.174i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
−0.984−0.174i
|
Analytic conductor: |
10.1041 |
Root analytic conductor: |
3.17870 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :5/2), −0.984−0.174i)
|
Particular Values
L(3) |
≈ |
0.212439+2.41369i |
L(21) |
≈ |
0.212439+2.41369i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−30.6+125.i)T |
good | 2 | 1+(−5.11+8.85i)T+(−16−27.7i)T2 |
| 5 | 1+(−11.8+20.5i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(−232.−403.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1+1.01e3T+3.71e5T2 |
| 17 | 1+(−280.−486.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−693.+1.20e3i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(−2.05e3+3.56e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1−2.38e3T+2.05e7T2 |
| 31 | 1+(1.47e3+2.55e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(−4.95e3+8.58e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1−4.47e3T+1.15e8T2 |
| 43 | 1−5.18e3T+1.47e8T2 |
| 47 | 1+(1.56e3−2.70e3i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−570.−988.i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(−1.37e4−2.38e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−1.05e4+1.82e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(−2.77e4−4.81e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1−6.07e3T+1.80e9T2 |
| 73 | 1+(−8.38e3−1.45e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(−2.42e3+4.19e3i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1+6.01e4T+3.93e9T2 |
| 89 | 1+(3.12e4−5.41e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+6.36e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.99533326876130253629722119211, −12.42402010727372423110855778097, −11.24976790682755540012549660378, −10.18020752216039981552873494098, −9.338492493681443476343619835912, −7.14391194419255722606568844502, −5.04437905922265098265754137820, −4.22625444851309139243255449987, −2.44655853350267015015861280444, −0.900750391196867634479850628379,
3.09802947825728272826189930714, 4.94743286478410068285764423294, 5.89551399692766232195554371632, 7.10360531170098358735588529716, 8.273118453698472296274698501049, 9.529528061078928753942223640790, 11.66297364727200424223477070071, 12.60242287644634859809301097199, 13.98362986695719015257406247753, 14.52998048216707017132261711824