L(s) = 1 | + (−1.5 − 0.866i)2-s + (−1.5 + 0.866i)3-s + (0.5 + 0.866i)4-s − 3·5-s + 3·6-s + (−2.5 + 0.866i)7-s + 1.73i·8-s + (1.5 − 2.59i)9-s + (4.5 + 2.59i)10-s − 1.73i·11-s + (−1.5 − 0.866i)12-s + (−1.5 − 0.866i)13-s + (4.5 + 0.866i)14-s + (4.5 − 2.59i)15-s + (2.49 − 4.33i)16-s + (1.5 − 2.59i)17-s + ⋯ |
L(s) = 1 | + (−1.06 − 0.612i)2-s + (−0.866 + 0.499i)3-s + (0.250 + 0.433i)4-s − 1.34·5-s + 1.22·6-s + (−0.944 + 0.327i)7-s + 0.612i·8-s + (0.5 − 0.866i)9-s + (1.42 + 0.821i)10-s − 0.522i·11-s + (−0.433 − 0.250i)12-s + (−0.416 − 0.240i)13-s + (1.20 + 0.231i)14-s + (1.16 − 0.670i)15-s + (0.624 − 1.08i)16-s + (0.363 − 0.630i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.916 - 0.400i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.916 - 0.400i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.5 - 0.866i)T \) |
| 7 | \( 1 + (2.5 - 0.866i)T \) |
good | 2 | \( 1 + (1.5 + 0.866i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 3T + 5T^{2} \) |
| 11 | \( 1 + 1.73iT - 11T^{2} \) |
| 13 | \( 1 + (1.5 + 0.866i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.5 - 2.59i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 5.19iT - 23T^{2} \) |
| 29 | \( 1 + (4.5 - 2.59i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3 - 1.73i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.5 + 6.06i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.5 + 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (7.5 + 4.33i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-12 - 6.92i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 3.46iT - 71T^{2} \) |
| 73 | \( 1 + (4.5 + 2.59i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4 - 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.5 + 12.9i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.5 - 2.59i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1.5 - 0.866i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.72518720460067095407821569932, −12.63168405721202051569981545816, −11.74329413950311306917841786480, −10.92088681910152773336161361167, −9.864422386167622675789850927708, −8.802172192593933841385547815591, −7.34549107508382060348600072128, −5.52642751154064048615476871412, −3.59247465438609684224541002929, 0,
4.19208744532054610463242934762, 6.47914789526070544924075624035, 7.28822556449389205247566826803, 8.288463075388603889105459389983, 9.835219782869175814349722782671, 10.96934280226174371830932762481, 12.33391187919379767374474263630, 12.97195490744740051471590904968, 15.06020113073052208804577183466