| L(s) = 1 | − 2.38·2-s + (−1.61 + 0.624i)3-s + 3.69·4-s + (1.46 − 2.52i)5-s + (3.85 − 1.49i)6-s + (−0.138 − 2.64i)7-s − 4.05·8-s + (2.22 − 2.01i)9-s + (−3.48 + 6.03i)10-s + (0.676 + 1.17i)11-s + (−5.97 + 2.30i)12-s + (−0.733 − 1.26i)13-s + (0.330 + 6.30i)14-s + (−0.779 + 4.99i)15-s + 2.27·16-s + (1.65 − 2.86i)17-s + ⋯ |
| L(s) = 1 | − 1.68·2-s + (−0.932 + 0.360i)3-s + 1.84·4-s + (0.653 − 1.13i)5-s + (1.57 − 0.608i)6-s + (−0.0523 − 0.998i)7-s − 1.43·8-s + (0.740 − 0.672i)9-s + (−1.10 + 1.90i)10-s + (0.204 + 0.353i)11-s + (−1.72 + 0.666i)12-s + (−0.203 − 0.352i)13-s + (0.0883 + 1.68i)14-s + (−0.201 + 1.29i)15-s + 0.568·16-s + (0.401 − 0.695i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.524 + 0.851i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.524 + 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.310578 - 0.173449i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.310578 - 0.173449i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (1.61 - 0.624i)T \) |
| 7 | \( 1 + (0.138 + 2.64i)T \) |
| good | 2 | \( 1 + 2.38T + 2T^{2} \) |
| 5 | \( 1 + (-1.46 + 2.52i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.676 - 1.17i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.733 + 1.26i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.65 + 2.86i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.10 + 1.91i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.31 - 2.27i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.521 + 0.903i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 3.27T + 31T^{2} \) |
| 37 | \( 1 + (-5.43 - 9.41i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.904 + 1.56i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.17 - 3.76i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 3.97T + 47T^{2} \) |
| 53 | \( 1 + (3.22 - 5.59i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 12.2T + 59T^{2} \) |
| 61 | \( 1 - 0.559T + 61T^{2} \) |
| 67 | \( 1 - 12.8T + 67T^{2} \) |
| 71 | \( 1 - 12.9T + 71T^{2} \) |
| 73 | \( 1 + (-5.22 + 9.05i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 0.767T + 79T^{2} \) |
| 83 | \( 1 + (0.983 - 1.70i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-3.20 - 5.54i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4.14 - 7.17i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.48751780804510744008927440463, −13.50972962432257886535935106925, −12.19278269965763883612407905899, −11.00493970703555146550094405353, −9.914454380345203183807013819605, −9.393043253290350663579209940654, −7.85024191693842950769154239420, −6.53207955415737755395834729244, −4.82158448379452796949920558183, −1.04350541068247671363544768239,
2.15573284589757776053100995816, 5.95279916044332521466658862994, 6.76323029692715788084911017726, 8.146539393692235838238829035462, 9.579346621903137151468808291829, 10.50893846914160806738614822997, 11.33370516650147767858426348389, 12.47984237451165769061111487264, 14.27944654688132241796148986113, 15.58856527940623628035201096869