Properties

Label 2-6223-1.1-c1-0-136
Degree $2$
Conductor $6223$
Sign $1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.40·2-s − 0.841·3-s + 3.79·4-s + 4.15·5-s + 2.02·6-s − 4.31·8-s − 2.29·9-s − 9.99·10-s + 0.388·11-s − 3.19·12-s − 6.22·13-s − 3.49·15-s + 2.80·16-s + 4.73·17-s + 5.51·18-s + 6.71·19-s + 15.7·20-s − 0.934·22-s + 5.02·23-s + 3.63·24-s + 12.2·25-s + 14.9·26-s + 4.45·27-s − 3.84·29-s + 8.41·30-s + 2.71·31-s + 1.88·32-s + ⋯
L(s)  = 1  − 1.70·2-s − 0.485·3-s + 1.89·4-s + 1.85·5-s + 0.826·6-s − 1.52·8-s − 0.764·9-s − 3.16·10-s + 0.117·11-s − 0.921·12-s − 1.72·13-s − 0.902·15-s + 0.701·16-s + 1.14·17-s + 1.30·18-s + 1.53·19-s + 3.52·20-s − 0.199·22-s + 1.04·23-s + 0.741·24-s + 2.45·25-s + 2.93·26-s + 0.856·27-s − 0.714·29-s + 1.53·30-s + 0.488·31-s + 0.333·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.030272259\)
\(L(\frac12)\) \(\approx\) \(1.030272259\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 - T \)
good2 \( 1 + 2.40T + 2T^{2} \)
3 \( 1 + 0.841T + 3T^{2} \)
5 \( 1 - 4.15T + 5T^{2} \)
11 \( 1 - 0.388T + 11T^{2} \)
13 \( 1 + 6.22T + 13T^{2} \)
17 \( 1 - 4.73T + 17T^{2} \)
19 \( 1 - 6.71T + 19T^{2} \)
23 \( 1 - 5.02T + 23T^{2} \)
29 \( 1 + 3.84T + 29T^{2} \)
31 \( 1 - 2.71T + 31T^{2} \)
37 \( 1 - 3.99T + 37T^{2} \)
41 \( 1 - 0.596T + 41T^{2} \)
43 \( 1 - 12.4T + 43T^{2} \)
47 \( 1 + 6.16T + 47T^{2} \)
53 \( 1 + 1.13T + 53T^{2} \)
59 \( 1 - 5.33T + 59T^{2} \)
61 \( 1 - 6.65T + 61T^{2} \)
67 \( 1 - 0.864T + 67T^{2} \)
71 \( 1 + 9.94T + 71T^{2} \)
73 \( 1 + 10.0T + 73T^{2} \)
79 \( 1 + 2.58T + 79T^{2} \)
83 \( 1 - 3.06T + 83T^{2} \)
89 \( 1 + 16.4T + 89T^{2} \)
97 \( 1 + 5.73T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.107224044309460089610253962430, −7.35165798139841354548425037394, −6.89606007424831578175461992275, −5.93429228751131656385380395085, −5.51621234181048921505552694473, −4.85916476442948567018173613102, −2.89562629099672537562590025072, −2.58418240969337232101332616446, −1.49693227252297244588412565494, −0.74698466383227781901838523522, 0.74698466383227781901838523522, 1.49693227252297244588412565494, 2.58418240969337232101332616446, 2.89562629099672537562590025072, 4.85916476442948567018173613102, 5.51621234181048921505552694473, 5.93429228751131656385380395085, 6.89606007424831578175461992275, 7.35165798139841354548425037394, 8.107224044309460089610253962430

Graph of the $Z$-function along the critical line