Properties

Label 2-6223-1.1-c1-0-131
Degree $2$
Conductor $6223$
Sign $1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.58·2-s − 1.11·3-s + 0.500·4-s + 3.47·5-s − 1.76·6-s − 2.37·8-s − 1.75·9-s + 5.49·10-s − 5.55·11-s − 0.557·12-s + 5.94·13-s − 3.87·15-s − 4.75·16-s − 1.11·17-s − 2.77·18-s − 7.21·19-s + 1.74·20-s − 8.79·22-s + 3.36·23-s + 2.64·24-s + 7.09·25-s + 9.40·26-s + 5.30·27-s + 5.92·29-s − 6.13·30-s − 0.933·31-s − 2.76·32-s + ⋯
L(s)  = 1  + 1.11·2-s − 0.643·3-s + 0.250·4-s + 1.55·5-s − 0.719·6-s − 0.838·8-s − 0.585·9-s + 1.73·10-s − 1.67·11-s − 0.161·12-s + 1.64·13-s − 1.00·15-s − 1.18·16-s − 0.271·17-s − 0.654·18-s − 1.65·19-s + 0.389·20-s − 1.87·22-s + 0.702·23-s + 0.539·24-s + 1.41·25-s + 1.84·26-s + 1.02·27-s + 1.10·29-s − 1.11·30-s − 0.167·31-s − 0.489·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.798059799\)
\(L(\frac12)\) \(\approx\) \(2.798059799\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 - T \)
good2 \( 1 - 1.58T + 2T^{2} \)
3 \( 1 + 1.11T + 3T^{2} \)
5 \( 1 - 3.47T + 5T^{2} \)
11 \( 1 + 5.55T + 11T^{2} \)
13 \( 1 - 5.94T + 13T^{2} \)
17 \( 1 + 1.11T + 17T^{2} \)
19 \( 1 + 7.21T + 19T^{2} \)
23 \( 1 - 3.36T + 23T^{2} \)
29 \( 1 - 5.92T + 29T^{2} \)
31 \( 1 + 0.933T + 31T^{2} \)
37 \( 1 - 0.869T + 37T^{2} \)
41 \( 1 - 1.05T + 41T^{2} \)
43 \( 1 - 4.96T + 43T^{2} \)
47 \( 1 - 12.2T + 47T^{2} \)
53 \( 1 + 0.972T + 53T^{2} \)
59 \( 1 + 1.21T + 59T^{2} \)
61 \( 1 - 2.39T + 61T^{2} \)
67 \( 1 - 5.12T + 67T^{2} \)
71 \( 1 - 14.4T + 71T^{2} \)
73 \( 1 - 8.77T + 73T^{2} \)
79 \( 1 - 5.63T + 79T^{2} \)
83 \( 1 + 11.2T + 83T^{2} \)
89 \( 1 - 14.3T + 89T^{2} \)
97 \( 1 - 10.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.248843840881232001712966123023, −6.84304625838439130741086680257, −6.09890489248387694116376151535, −5.97899997003550696772596869151, −5.22856537554947594815383225081, −4.74836113378871118713523241085, −3.72872920642329941496599094995, −2.68192548068808400982834170450, −2.26611255586144597876983924385, −0.73852942459426958076838765930, 0.73852942459426958076838765930, 2.26611255586144597876983924385, 2.68192548068808400982834170450, 3.72872920642329941496599094995, 4.74836113378871118713523241085, 5.22856537554947594815383225081, 5.97899997003550696772596869151, 6.09890489248387694116376151535, 6.84304625838439130741086680257, 8.248843840881232001712966123023

Graph of the $Z$-function along the critical line