Properties

Label 2-6223-1.1-c1-0-128
Degree $2$
Conductor $6223$
Sign $-1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.15·2-s − 2.52·3-s − 0.659·4-s − 3.10·5-s + 2.92·6-s + 3.07·8-s + 3.38·9-s + 3.59·10-s + 2.14·11-s + 1.66·12-s − 0.468·13-s + 7.84·15-s − 2.24·16-s + 3.75·17-s − 3.92·18-s − 6.67·19-s + 2.04·20-s − 2.47·22-s − 2.72·23-s − 7.78·24-s + 4.64·25-s + 0.542·26-s − 0.973·27-s + 1.21·29-s − 9.08·30-s − 6.04·31-s − 3.55·32-s + ⋯
L(s)  = 1  − 0.818·2-s − 1.45·3-s − 0.329·4-s − 1.38·5-s + 1.19·6-s + 1.08·8-s + 1.12·9-s + 1.13·10-s + 0.645·11-s + 0.480·12-s − 0.129·13-s + 2.02·15-s − 0.561·16-s + 0.910·17-s − 0.923·18-s − 1.53·19-s + 0.457·20-s − 0.528·22-s − 0.568·23-s − 1.58·24-s + 0.928·25-s + 0.106·26-s − 0.187·27-s + 0.224·29-s − 1.65·30-s − 1.08·31-s − 0.628·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $-1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 - T \)
good2 \( 1 + 1.15T + 2T^{2} \)
3 \( 1 + 2.52T + 3T^{2} \)
5 \( 1 + 3.10T + 5T^{2} \)
11 \( 1 - 2.14T + 11T^{2} \)
13 \( 1 + 0.468T + 13T^{2} \)
17 \( 1 - 3.75T + 17T^{2} \)
19 \( 1 + 6.67T + 19T^{2} \)
23 \( 1 + 2.72T + 23T^{2} \)
29 \( 1 - 1.21T + 29T^{2} \)
31 \( 1 + 6.04T + 31T^{2} \)
37 \( 1 + 6.22T + 37T^{2} \)
41 \( 1 + 7.66T + 41T^{2} \)
43 \( 1 + 2.32T + 43T^{2} \)
47 \( 1 - 6.31T + 47T^{2} \)
53 \( 1 - 7.01T + 53T^{2} \)
59 \( 1 - 5.33T + 59T^{2} \)
61 \( 1 + 3.01T + 61T^{2} \)
67 \( 1 + 5.67T + 67T^{2} \)
71 \( 1 + 3.57T + 71T^{2} \)
73 \( 1 - 9.11T + 73T^{2} \)
79 \( 1 - 13.8T + 79T^{2} \)
83 \( 1 - 15.2T + 83T^{2} \)
89 \( 1 + 13.0T + 89T^{2} \)
97 \( 1 - 6.76T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70027634645228021304859722528, −7.07493482319108733908001543063, −6.43852745228609420513535509082, −5.50242589520915116071817326548, −4.83176360450776244369042157153, −4.09303683203172582955092748714, −3.58936011984590474018525486756, −1.83601575715037926856325140555, −0.73241158186483281048950257282, 0, 0.73241158186483281048950257282, 1.83601575715037926856325140555, 3.58936011984590474018525486756, 4.09303683203172582955092748714, 4.83176360450776244369042157153, 5.50242589520915116071817326548, 6.43852745228609420513535509082, 7.07493482319108733908001543063, 7.70027634645228021304859722528

Graph of the $Z$-function along the critical line