Properties

Label 2-6223-1.1-c1-0-119
Degree $2$
Conductor $6223$
Sign $1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.87·2-s − 2.70·3-s + 1.52·4-s + 1.35·5-s − 5.08·6-s − 0.894·8-s + 4.33·9-s + 2.54·10-s − 3.15·11-s − 4.12·12-s + 6.06·13-s − 3.67·15-s − 4.72·16-s − 0.602·17-s + 8.13·18-s − 0.104·19-s + 2.06·20-s − 5.92·22-s − 0.943·23-s + 2.42·24-s − 3.16·25-s + 11.3·26-s − 3.60·27-s − 1.41·29-s − 6.89·30-s + 3.09·31-s − 7.08·32-s + ⋯
L(s)  = 1  + 1.32·2-s − 1.56·3-s + 0.761·4-s + 0.606·5-s − 2.07·6-s − 0.316·8-s + 1.44·9-s + 0.804·10-s − 0.952·11-s − 1.19·12-s + 1.68·13-s − 0.947·15-s − 1.18·16-s − 0.146·17-s + 1.91·18-s − 0.0240·19-s + 0.461·20-s − 1.26·22-s − 0.196·23-s + 0.494·24-s − 0.632·25-s + 2.23·26-s − 0.694·27-s − 0.261·29-s − 1.25·30-s + 0.555·31-s − 1.25·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.170932856\)
\(L(\frac12)\) \(\approx\) \(2.170932856\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 + T \)
good2 \( 1 - 1.87T + 2T^{2} \)
3 \( 1 + 2.70T + 3T^{2} \)
5 \( 1 - 1.35T + 5T^{2} \)
11 \( 1 + 3.15T + 11T^{2} \)
13 \( 1 - 6.06T + 13T^{2} \)
17 \( 1 + 0.602T + 17T^{2} \)
19 \( 1 + 0.104T + 19T^{2} \)
23 \( 1 + 0.943T + 23T^{2} \)
29 \( 1 + 1.41T + 29T^{2} \)
31 \( 1 - 3.09T + 31T^{2} \)
37 \( 1 - 11.5T + 37T^{2} \)
41 \( 1 + 4.27T + 41T^{2} \)
43 \( 1 + 3.68T + 43T^{2} \)
47 \( 1 - 1.36T + 47T^{2} \)
53 \( 1 - 1.57T + 53T^{2} \)
59 \( 1 - 9.87T + 59T^{2} \)
61 \( 1 - 0.654T + 61T^{2} \)
67 \( 1 + 3.75T + 67T^{2} \)
71 \( 1 + 10.8T + 71T^{2} \)
73 \( 1 - 8.75T + 73T^{2} \)
79 \( 1 - 6.95T + 79T^{2} \)
83 \( 1 + 8.05T + 83T^{2} \)
89 \( 1 - 10.1T + 89T^{2} \)
97 \( 1 + 1.78T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87137095824408489635218336944, −6.78728439273690630663121409616, −6.24521162337148701682447986827, −5.77881171616835052683550252559, −5.36964528515670271572246235276, −4.58097043774489021730652873366, −3.95232071045036348317111825909, −2.99085032422173507661751988522, −1.92107744556061185479820953118, −0.67578110410409153300447979060, 0.67578110410409153300447979060, 1.92107744556061185479820953118, 2.99085032422173507661751988522, 3.95232071045036348317111825909, 4.58097043774489021730652873366, 5.36964528515670271572246235276, 5.77881171616835052683550252559, 6.24521162337148701682447986827, 6.78728439273690630663121409616, 7.87137095824408489635218336944

Graph of the $Z$-function along the critical line