Properties

Label 2-6223-1.1-c1-0-112
Degree $2$
Conductor $6223$
Sign $1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.01·2-s − 0.720·3-s − 0.977·4-s − 2.17·5-s + 0.728·6-s + 3.01·8-s − 2.48·9-s + 2.20·10-s + 1.36·11-s + 0.704·12-s + 5.86·13-s + 1.56·15-s − 1.08·16-s + 6.06·17-s + 2.50·18-s − 2.16·19-s + 2.13·20-s − 1.37·22-s + 3.47·23-s − 2.16·24-s − 0.250·25-s − 5.92·26-s + 3.94·27-s + 6.75·29-s − 1.58·30-s − 1.18·31-s − 4.92·32-s + ⋯
L(s)  = 1  − 0.714·2-s − 0.415·3-s − 0.488·4-s − 0.974·5-s + 0.297·6-s + 1.06·8-s − 0.827·9-s + 0.696·10-s + 0.410·11-s + 0.203·12-s + 1.62·13-s + 0.405·15-s − 0.272·16-s + 1.46·17-s + 0.591·18-s − 0.496·19-s + 0.476·20-s − 0.293·22-s + 0.724·23-s − 0.442·24-s − 0.0501·25-s − 1.16·26-s + 0.759·27-s + 1.25·29-s − 0.289·30-s − 0.213·31-s − 0.869·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8416158781\)
\(L(\frac12)\) \(\approx\) \(0.8416158781\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 + T \)
good2 \( 1 + 1.01T + 2T^{2} \)
3 \( 1 + 0.720T + 3T^{2} \)
5 \( 1 + 2.17T + 5T^{2} \)
11 \( 1 - 1.36T + 11T^{2} \)
13 \( 1 - 5.86T + 13T^{2} \)
17 \( 1 - 6.06T + 17T^{2} \)
19 \( 1 + 2.16T + 19T^{2} \)
23 \( 1 - 3.47T + 23T^{2} \)
29 \( 1 - 6.75T + 29T^{2} \)
31 \( 1 + 1.18T + 31T^{2} \)
37 \( 1 - 10.3T + 37T^{2} \)
41 \( 1 + 0.769T + 41T^{2} \)
43 \( 1 - 4.36T + 43T^{2} \)
47 \( 1 + 10.3T + 47T^{2} \)
53 \( 1 - 8.26T + 53T^{2} \)
59 \( 1 - 5.53T + 59T^{2} \)
61 \( 1 - 14.0T + 61T^{2} \)
67 \( 1 + 8.19T + 67T^{2} \)
71 \( 1 + 8.12T + 71T^{2} \)
73 \( 1 - 5.55T + 73T^{2} \)
79 \( 1 + 12.3T + 79T^{2} \)
83 \( 1 + 1.64T + 83T^{2} \)
89 \( 1 - 4.15T + 89T^{2} \)
97 \( 1 + 18.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.284977766717075559888545168691, −7.60498865323333887529782367120, −6.70046012135292606659598467056, −5.93288361125739399883971655062, −5.25244426603089707171727038524, −4.28606263748988136092463417395, −3.75103504290166297684480257811, −2.89609470311155891553611713471, −1.27849461582733175371559952407, −0.64796164840445423741582083037, 0.64796164840445423741582083037, 1.27849461582733175371559952407, 2.89609470311155891553611713471, 3.75103504290166297684480257811, 4.28606263748988136092463417395, 5.25244426603089707171727038524, 5.93288361125739399883971655062, 6.70046012135292606659598467056, 7.60498865323333887529782367120, 8.284977766717075559888545168691

Graph of the $Z$-function along the critical line