Properties

Label 2-6223-1.1-c1-0-104
Degree $2$
Conductor $6223$
Sign $1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.53·2-s + 1.34·3-s + 4.41·4-s + 0.120·5-s − 3.41·6-s − 6.10·8-s − 1.18·9-s − 0.305·10-s − 2.71·11-s + 5.94·12-s + 5.10·13-s + 0.162·15-s + 6.63·16-s + 4.46·17-s + 3.00·18-s − 2.87·19-s + 0.532·20-s + 6.87·22-s − 5.22·23-s − 8.22·24-s − 4.98·25-s − 12.9·26-s − 5.63·27-s + 5.94·29-s − 0.411·30-s − 1.42·31-s − 4.59·32-s + ⋯
L(s)  = 1  − 1.79·2-s + 0.777·3-s + 2.20·4-s + 0.0539·5-s − 1.39·6-s − 2.15·8-s − 0.394·9-s − 0.0965·10-s − 0.819·11-s + 1.71·12-s + 1.41·13-s + 0.0419·15-s + 1.65·16-s + 1.08·17-s + 0.707·18-s − 0.660·19-s + 0.118·20-s + 1.46·22-s − 1.08·23-s − 1.67·24-s − 0.997·25-s − 2.53·26-s − 1.08·27-s + 1.10·29-s − 0.0751·30-s − 0.256·31-s − 0.812·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9262079430\)
\(L(\frac12)\) \(\approx\) \(0.9262079430\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 + T \)
good2 \( 1 + 2.53T + 2T^{2} \)
3 \( 1 - 1.34T + 3T^{2} \)
5 \( 1 - 0.120T + 5T^{2} \)
11 \( 1 + 2.71T + 11T^{2} \)
13 \( 1 - 5.10T + 13T^{2} \)
17 \( 1 - 4.46T + 17T^{2} \)
19 \( 1 + 2.87T + 19T^{2} \)
23 \( 1 + 5.22T + 23T^{2} \)
29 \( 1 - 5.94T + 29T^{2} \)
31 \( 1 + 1.42T + 31T^{2} \)
37 \( 1 + 10.5T + 37T^{2} \)
41 \( 1 - 5.38T + 41T^{2} \)
43 \( 1 - 8.27T + 43T^{2} \)
47 \( 1 - 6.43T + 47T^{2} \)
53 \( 1 - 12.6T + 53T^{2} \)
59 \( 1 + 2.71T + 59T^{2} \)
61 \( 1 - 1.98T + 61T^{2} \)
67 \( 1 + 2.87T + 67T^{2} \)
71 \( 1 - 9.49T + 71T^{2} \)
73 \( 1 + 11.0T + 73T^{2} \)
79 \( 1 + 7.72T + 79T^{2} \)
83 \( 1 + 11.4T + 83T^{2} \)
89 \( 1 - 2.64T + 89T^{2} \)
97 \( 1 + 1.68T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.236329032331620771090063331455, −7.70657863152776676402198948039, −7.06301610419050610844489987650, −5.93420942756748716062318924671, −5.74736144263697885275073263903, −4.11105413445177109091931743339, −3.26813704067578213965965585130, −2.44526140001172796684602371030, −1.74774023088608821897532496445, −0.62478664572077375946195125029, 0.62478664572077375946195125029, 1.74774023088608821897532496445, 2.44526140001172796684602371030, 3.26813704067578213965965585130, 4.11105413445177109091931743339, 5.74736144263697885275073263903, 5.93420942756748716062318924671, 7.06301610419050610844489987650, 7.70657863152776676402198948039, 8.236329032331620771090063331455

Graph of the $Z$-function along the critical line