Properties

Label 2-6223-1.1-c1-0-102
Degree $2$
Conductor $6223$
Sign $1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.381·2-s + 2·3-s − 1.85·4-s − 2.61·5-s + 0.763·6-s − 1.47·8-s + 9-s − 10-s − 0.381·11-s − 3.70·12-s + 6.85·13-s − 5.23·15-s + 3.14·16-s − 2.23·17-s + 0.381·18-s − 5.70·19-s + 4.85·20-s − 0.145·22-s − 4.09·23-s − 2.94·24-s + 1.85·25-s + 2.61·26-s − 4·27-s + 8.23·29-s − 2·30-s + 5·31-s + 4.14·32-s + ⋯
L(s)  = 1  + 0.270·2-s + 1.15·3-s − 0.927·4-s − 1.17·5-s + 0.311·6-s − 0.520·8-s + 0.333·9-s − 0.316·10-s − 0.115·11-s − 1.07·12-s + 1.90·13-s − 1.35·15-s + 0.786·16-s − 0.542·17-s + 0.0900·18-s − 1.30·19-s + 1.08·20-s − 0.0311·22-s − 0.852·23-s − 0.600·24-s + 0.370·25-s + 0.513·26-s − 0.769·27-s + 1.52·29-s − 0.365·30-s + 0.898·31-s + 0.732·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.743931238\)
\(L(\frac12)\) \(\approx\) \(1.743931238\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 + T \)
good2 \( 1 - 0.381T + 2T^{2} \)
3 \( 1 - 2T + 3T^{2} \)
5 \( 1 + 2.61T + 5T^{2} \)
11 \( 1 + 0.381T + 11T^{2} \)
13 \( 1 - 6.85T + 13T^{2} \)
17 \( 1 + 2.23T + 17T^{2} \)
19 \( 1 + 5.70T + 19T^{2} \)
23 \( 1 + 4.09T + 23T^{2} \)
29 \( 1 - 8.23T + 29T^{2} \)
31 \( 1 - 5T + 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 + 1.47T + 41T^{2} \)
43 \( 1 + 5.14T + 43T^{2} \)
47 \( 1 + 3.76T + 47T^{2} \)
53 \( 1 - 0.381T + 53T^{2} \)
59 \( 1 + 2.23T + 59T^{2} \)
61 \( 1 + 1.70T + 61T^{2} \)
67 \( 1 + 10.8T + 67T^{2} \)
71 \( 1 - 13.0T + 71T^{2} \)
73 \( 1 + 0.854T + 73T^{2} \)
79 \( 1 - 14.4T + 79T^{2} \)
83 \( 1 + 1.52T + 83T^{2} \)
89 \( 1 - 16.4T + 89T^{2} \)
97 \( 1 - 12.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.103994254184039786055625603627, −7.85042420016822690290763161422, −6.49287637619021865420002270962, −6.09472861255790417308918784009, −4.80117318033936074862025077451, −4.24081360227491438669514378552, −3.61519583927091551493717342356, −3.16508730197638154685819036851, −1.98985052275062812249766077202, −0.61994808537038113971831207402, 0.61994808537038113971831207402, 1.98985052275062812249766077202, 3.16508730197638154685819036851, 3.61519583927091551493717342356, 4.24081360227491438669514378552, 4.80117318033936074862025077451, 6.09472861255790417308918784009, 6.49287637619021865420002270962, 7.85042420016822690290763161422, 8.103994254184039786055625603627

Graph of the $Z$-function along the critical line