Properties

Label 2-62-31.10-c5-0-5
Degree $2$
Conductor $62$
Sign $0.259 - 0.965i$
Analytic cond. $9.94379$
Root an. cond. $3.15337$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.23 + 2.35i)2-s + (−0.559 − 5.32i)3-s + (4.94 + 15.2i)4-s + (23.3 + 40.3i)5-s + (10.7 − 18.5i)6-s + (1.01 + 0.215i)7-s + (−19.7 + 60.8i)8-s + (209. − 44.5i)9-s + (−19.5 + 185. i)10-s + (−441. + 490. i)11-s + (78.2 − 34.8i)12-s + (522. + 232. i)13-s + (2.77 + 3.07i)14-s + (201. − 146. i)15-s + (−207. + 150. i)16-s + (1.09e3 + 1.22e3i)17-s + ⋯
L(s)  = 1  + (0.572 + 0.415i)2-s + (−0.0358 − 0.341i)3-s + (0.154 + 0.475i)4-s + (0.417 + 0.722i)5-s + (0.121 − 0.210i)6-s + (0.00781 + 0.00166i)7-s + (−0.109 + 0.336i)8-s + (0.862 − 0.183i)9-s + (−0.0616 + 0.586i)10-s + (−1.10 + 1.22i)11-s + (0.156 − 0.0698i)12-s + (0.858 + 0.382i)13-s + (0.00378 + 0.00419i)14-s + (0.231 − 0.168i)15-s + (−0.202 + 0.146i)16-s + (0.922 + 1.02i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.259 - 0.965i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.259 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62\)    =    \(2 \cdot 31\)
Sign: $0.259 - 0.965i$
Analytic conductor: \(9.94379\)
Root analytic conductor: \(3.15337\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{62} (41, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 62,\ (\ :5/2),\ 0.259 - 0.965i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.96625 + 1.50693i\)
\(L(\frac12)\) \(\approx\) \(1.96625 + 1.50693i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-3.23 - 2.35i)T \)
31 \( 1 + (-834. - 5.28e3i)T \)
good3 \( 1 + (0.559 + 5.32i)T + (-237. + 50.5i)T^{2} \)
5 \( 1 + (-23.3 - 40.3i)T + (-1.56e3 + 2.70e3i)T^{2} \)
7 \( 1 + (-1.01 - 0.215i)T + (1.53e4 + 6.83e3i)T^{2} \)
11 \( 1 + (441. - 490. i)T + (-1.68e4 - 1.60e5i)T^{2} \)
13 \( 1 + (-522. - 232. i)T + (2.48e5 + 2.75e5i)T^{2} \)
17 \( 1 + (-1.09e3 - 1.22e3i)T + (-1.48e5 + 1.41e6i)T^{2} \)
19 \( 1 + (-202. + 90.2i)T + (1.65e6 - 1.84e6i)T^{2} \)
23 \( 1 + (342. - 1.05e3i)T + (-5.20e6 - 3.78e6i)T^{2} \)
29 \( 1 + (6.44e3 + 4.68e3i)T + (6.33e6 + 1.95e7i)T^{2} \)
37 \( 1 + (-6.86e3 + 1.18e4i)T + (-3.46e7 - 6.00e7i)T^{2} \)
41 \( 1 + (-1.72e3 + 1.63e4i)T + (-1.13e8 - 2.40e7i)T^{2} \)
43 \( 1 + (-8.81e3 + 3.92e3i)T + (9.83e7 - 1.09e8i)T^{2} \)
47 \( 1 + (5.49e3 - 3.99e3i)T + (7.08e7 - 2.18e8i)T^{2} \)
53 \( 1 + (-2.39e3 + 508. i)T + (3.82e8 - 1.70e8i)T^{2} \)
59 \( 1 + (2.81e3 + 2.68e4i)T + (-6.99e8 + 1.48e8i)T^{2} \)
61 \( 1 - 3.08e4T + 8.44e8T^{2} \)
67 \( 1 + (5.34e3 + 9.25e3i)T + (-6.75e8 + 1.16e9i)T^{2} \)
71 \( 1 + (3.02e4 - 6.42e3i)T + (1.64e9 - 7.33e8i)T^{2} \)
73 \( 1 + (2.34e4 - 2.60e4i)T + (-2.16e8 - 2.06e9i)T^{2} \)
79 \( 1 + (-6.29e4 - 6.98e4i)T + (-3.21e8 + 3.06e9i)T^{2} \)
83 \( 1 + (4.70e3 - 4.47e4i)T + (-3.85e9 - 8.18e8i)T^{2} \)
89 \( 1 + (-2.41e4 - 7.42e4i)T + (-4.51e9 + 3.28e9i)T^{2} \)
97 \( 1 + (-65.8 - 202. i)T + (-6.94e9 + 5.04e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.25801314195564255449562910460, −13.10676649794313201138859180335, −12.41175971814115692093155227350, −10.81833280151650313198830770332, −9.754905787873528450420260146413, −7.85130897566127763166475117549, −6.90476016648538820613460764234, −5.66101989610622487670935231071, −3.93796332734738394920759037521, −2.03892100518710582191683633311, 1.09072130901234706518823926311, 3.18478069878952804817104229585, 4.86097083241518123218217516293, 5.85406816090451424593197675051, 7.84302810245935044695856993167, 9.338594316337804542860579554554, 10.44180725678364888564086974604, 11.47714392416369875543002659174, 13.13463148416987854670032090017, 13.25625551791816450454466033995

Graph of the $Z$-function along the critical line