Properties

Label 2-62-31.10-c5-0-4
Degree $2$
Conductor $62$
Sign $-0.573 - 0.818i$
Analytic cond. $9.94379$
Root an. cond. $3.15337$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.23 − 2.35i)2-s + (2.51 + 23.9i)3-s + (4.94 + 15.2i)4-s + (54.0 + 93.5i)5-s + (48.1 − 83.3i)6-s + (77.2 + 16.4i)7-s + (19.7 − 60.8i)8-s + (−328. + 69.7i)9-s + (45.1 − 429. i)10-s + (38.9 − 43.2i)11-s + (−351. + 156. i)12-s + (281. + 125. i)13-s + (−211. − 234. i)14-s + (−2.10e3 + 1.52e3i)15-s + (−207. + 150. i)16-s + (−461. − 512. i)17-s + ⋯
L(s)  = 1  + (−0.572 − 0.415i)2-s + (0.161 + 1.53i)3-s + (0.154 + 0.475i)4-s + (0.966 + 1.67i)5-s + (0.545 − 0.945i)6-s + (0.595 + 0.126i)7-s + (0.109 − 0.336i)8-s + (−1.35 + 0.287i)9-s + (0.142 − 1.35i)10-s + (0.0971 − 0.107i)11-s + (−0.704 + 0.313i)12-s + (0.461 + 0.205i)13-s + (−0.288 − 0.319i)14-s + (−2.41 + 1.75i)15-s + (−0.202 + 0.146i)16-s + (−0.387 − 0.430i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.573 - 0.818i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.573 - 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62\)    =    \(2 \cdot 31\)
Sign: $-0.573 - 0.818i$
Analytic conductor: \(9.94379\)
Root analytic conductor: \(3.15337\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{62} (41, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 62,\ (\ :5/2),\ -0.573 - 0.818i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.765172 + 1.47077i\)
\(L(\frac12)\) \(\approx\) \(0.765172 + 1.47077i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (3.23 + 2.35i)T \)
31 \( 1 + (4.58e3 + 2.75e3i)T \)
good3 \( 1 + (-2.51 - 23.9i)T + (-237. + 50.5i)T^{2} \)
5 \( 1 + (-54.0 - 93.5i)T + (-1.56e3 + 2.70e3i)T^{2} \)
7 \( 1 + (-77.2 - 16.4i)T + (1.53e4 + 6.83e3i)T^{2} \)
11 \( 1 + (-38.9 + 43.2i)T + (-1.68e4 - 1.60e5i)T^{2} \)
13 \( 1 + (-281. - 125. i)T + (2.48e5 + 2.75e5i)T^{2} \)
17 \( 1 + (461. + 512. i)T + (-1.48e5 + 1.41e6i)T^{2} \)
19 \( 1 + (-2.08e3 + 930. i)T + (1.65e6 - 1.84e6i)T^{2} \)
23 \( 1 + (16.2 - 50.1i)T + (-5.20e6 - 3.78e6i)T^{2} \)
29 \( 1 + (2.36e3 + 1.72e3i)T + (6.33e6 + 1.95e7i)T^{2} \)
37 \( 1 + (-6.78e3 + 1.17e4i)T + (-3.46e7 - 6.00e7i)T^{2} \)
41 \( 1 + (-1.62e3 + 1.54e4i)T + (-1.13e8 - 2.40e7i)T^{2} \)
43 \( 1 + (-8.75e3 + 3.89e3i)T + (9.83e7 - 1.09e8i)T^{2} \)
47 \( 1 + (2.17e4 - 1.57e4i)T + (7.08e7 - 2.18e8i)T^{2} \)
53 \( 1 + (-3.56e4 + 7.58e3i)T + (3.82e8 - 1.70e8i)T^{2} \)
59 \( 1 + (-4.54e3 - 4.32e4i)T + (-6.99e8 + 1.48e8i)T^{2} \)
61 \( 1 - 181.T + 8.44e8T^{2} \)
67 \( 1 + (-5.78e3 - 1.00e4i)T + (-6.75e8 + 1.16e9i)T^{2} \)
71 \( 1 + (-2.98e4 + 6.34e3i)T + (1.64e9 - 7.33e8i)T^{2} \)
73 \( 1 + (-3.62e4 + 4.02e4i)T + (-2.16e8 - 2.06e9i)T^{2} \)
79 \( 1 + (3.42e3 + 3.80e3i)T + (-3.21e8 + 3.06e9i)T^{2} \)
83 \( 1 + (1.15e4 - 1.10e5i)T + (-3.85e9 - 8.18e8i)T^{2} \)
89 \( 1 + (-1.98e4 - 6.09e4i)T + (-4.51e9 + 3.28e9i)T^{2} \)
97 \( 1 + (3.33e4 + 1.02e5i)T + (-6.94e9 + 5.04e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53721427395362562925761670173, −13.65754699867533450594154395066, −11.27969859238678931547006887370, −10.93286621749229240218458266675, −9.799830545402515142850541381505, −9.152539872036082218078045158984, −7.27736404109562988528592045092, −5.59527096457639161778697807866, −3.70471786322561789271014069053, −2.41986527254880065294742135797, 1.02602316919556917356503072408, 1.72732866115561572114706890157, 5.17381248879402762878373335155, 6.31458724852000482383280770357, 7.83621545866777467138380317839, 8.561994858972878509013113647102, 9.723609298647071750549117684547, 11.61252241514980662885629204331, 12.79205173180586203592413794666, 13.43078042481029823520406170501

Graph of the $Z$-function along the critical line