L(s) = 1 | + 1.73i·7-s + 13-s − 1.73i·19-s + 1.73i·31-s + 2·37-s + 1.73i·43-s − 1.99·49-s − 61-s + 1.73i·67-s − 2·73-s + 1.73i·91-s + 97-s + 109-s + ⋯ |
L(s) = 1 | + 1.73i·7-s + 13-s − 1.73i·19-s + 1.73i·31-s + 2·37-s + 1.73i·43-s − 1.99·49-s − 61-s + 1.73i·67-s − 2·73-s + 1.73i·91-s + 97-s + 109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 - 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 - 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.304541734\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.304541734\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 1.73iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + 1.73iT - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - 1.73iT - T^{2} \) |
| 37 | \( 1 - 2T + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - 1.73iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - 1.73iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 2T + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.867470330904173342821232056490, −8.352937788875759211196280498756, −7.39502693616187491454632631477, −6.41932832409070900917269557885, −5.96532382474648780660299390712, −5.10156698455657904980448646174, −4.41151213172758678057851222304, −3.06362229102243986605066833457, −2.61659039085290545781143792099, −1.36858935655896603797884666969,
0.849287628200568591356291987110, 1.88976216955315927353710890275, 3.35147616920509415702730398561, 3.96765265705382171201653111116, 4.53293702398748791021384047300, 5.85717804278547754481236016725, 6.25529837166572875014060175006, 7.34431156178424980269602863901, 7.74150735439921101569748939819, 8.446156141950173316095183383653