L(s) = 1 | + (0.587 − 0.809i)5-s + (0.5 − 1.53i)13-s + (1.53 + 1.11i)17-s + (−0.309 − 0.951i)25-s + (−1.53 + 1.11i)29-s + (0.190 − 0.587i)37-s + (0.363 − 1.11i)41-s + 49-s + (−0.951 + 0.690i)53-s + (−0.5 − 1.53i)61-s + (−0.951 − 1.30i)65-s + (0.5 + 1.53i)73-s + (1.80 − 0.587i)85-s + (−0.587 − 1.80i)89-s + (0.5 − 0.363i)97-s + ⋯ |
L(s) = 1 | + (0.587 − 0.809i)5-s + (0.5 − 1.53i)13-s + (1.53 + 1.11i)17-s + (−0.309 − 0.951i)25-s + (−1.53 + 1.11i)29-s + (0.190 − 0.587i)37-s + (0.363 − 1.11i)41-s + 49-s + (−0.951 + 0.690i)53-s + (−0.5 − 1.53i)61-s + (−0.951 − 1.30i)65-s + (0.5 + 1.53i)73-s + (1.80 − 0.587i)85-s + (−0.587 − 1.80i)89-s + (0.5 − 0.363i)97-s + ⋯ |
Λ(s)=(=(3600s/2ΓC(s)L(s)(0.637+0.770i)Λ(1−s)
Λ(s)=(=(3600s/2ΓC(s)L(s)(0.637+0.770i)Λ(1−s)
Degree: |
2 |
Conductor: |
3600
= 24⋅32⋅52
|
Sign: |
0.637+0.770i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3600(2431,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3600, ( :0), 0.637+0.770i)
|
Particular Values
L(21) |
≈ |
1.491538894 |
L(21) |
≈ |
1.491538894 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−0.587+0.809i)T |
good | 7 | 1−T2 |
| 11 | 1+(0.809−0.587i)T2 |
| 13 | 1+(−0.5+1.53i)T+(−0.809−0.587i)T2 |
| 17 | 1+(−1.53−1.11i)T+(0.309+0.951i)T2 |
| 19 | 1+(−0.309−0.951i)T2 |
| 23 | 1+(0.809−0.587i)T2 |
| 29 | 1+(1.53−1.11i)T+(0.309−0.951i)T2 |
| 31 | 1+(−0.309−0.951i)T2 |
| 37 | 1+(−0.190+0.587i)T+(−0.809−0.587i)T2 |
| 41 | 1+(−0.363+1.11i)T+(−0.809−0.587i)T2 |
| 43 | 1−T2 |
| 47 | 1+(−0.309+0.951i)T2 |
| 53 | 1+(0.951−0.690i)T+(0.309−0.951i)T2 |
| 59 | 1+(0.809+0.587i)T2 |
| 61 | 1+(0.5+1.53i)T+(−0.809+0.587i)T2 |
| 67 | 1+(−0.309−0.951i)T2 |
| 71 | 1+(−0.309+0.951i)T2 |
| 73 | 1+(−0.5−1.53i)T+(−0.809+0.587i)T2 |
| 79 | 1+(−0.309+0.951i)T2 |
| 83 | 1+(−0.309−0.951i)T2 |
| 89 | 1+(0.587+1.80i)T+(−0.809+0.587i)T2 |
| 97 | 1+(−0.5+0.363i)T+(0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.634645538723734877188175634893, −7.928415303651406930754436133120, −7.36004432837544540425262262356, −6.02599320117936753597049595904, −5.69878666478171140842910200569, −5.06112316946891337130104262141, −3.87668915477515962908998267055, −3.21793009496791806389229853546, −1.92708906652448441659525863001, −0.977557961465797295495772041483,
1.41737282729308541845354976111, 2.39859839011044621208651091764, 3.30106422423217029575374342755, 4.13633216876818177349587965202, 5.16233490095659198185152732386, 5.96568153634088584923879080575, 6.55436437929771469128905478995, 7.37102695531173457431326062567, 7.893111300711987573229854036254, 9.108364717096661180817865307297