L(s) = 1 | + (0.587 − 0.809i)5-s + (0.5 − 1.53i)13-s + (1.53 + 1.11i)17-s + (−0.309 − 0.951i)25-s + (−1.53 + 1.11i)29-s + (0.190 − 0.587i)37-s + (0.363 − 1.11i)41-s + 49-s + (−0.951 + 0.690i)53-s + (−0.5 − 1.53i)61-s + (−0.951 − 1.30i)65-s + (0.5 + 1.53i)73-s + (1.80 − 0.587i)85-s + (−0.587 − 1.80i)89-s + (0.5 − 0.363i)97-s + ⋯ |
L(s) = 1 | + (0.587 − 0.809i)5-s + (0.5 − 1.53i)13-s + (1.53 + 1.11i)17-s + (−0.309 − 0.951i)25-s + (−1.53 + 1.11i)29-s + (0.190 − 0.587i)37-s + (0.363 − 1.11i)41-s + 49-s + (−0.951 + 0.690i)53-s + (−0.5 − 1.53i)61-s + (−0.951 − 1.30i)65-s + (0.5 + 1.53i)73-s + (1.80 − 0.587i)85-s + (−0.587 − 1.80i)89-s + (0.5 − 0.363i)97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.637 + 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.637 + 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.491538894\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.491538894\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.587 + 0.809i)T \) |
good | 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-1.53 - 1.11i)T + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (1.53 - 1.11i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.363 + 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.951 - 0.690i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.5 + 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 71 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + (0.587 + 1.80i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.634645538723734877188175634893, −7.928415303651406930754436133120, −7.36004432837544540425262262356, −6.02599320117936753597049595904, −5.69878666478171140842910200569, −5.06112316946891337130104262141, −3.87668915477515962908998267055, −3.21793009496791806389229853546, −1.92708906652448441659525863001, −0.977557961465797295495772041483,
1.41737282729308541845354976111, 2.39859839011044621208651091764, 3.30106422423217029575374342755, 4.13633216876818177349587965202, 5.16233490095659198185152732386, 5.96568153634088584923879080575, 6.55436437929771469128905478995, 7.37102695531173457431326062567, 7.893111300711987573229854036254, 9.108364717096661180817865307297