L(s) = 1 | + 0.642·3-s − 5-s + 3.58·7-s − 2.58·9-s − 1.35·13-s − 0.642·15-s + 5.58·17-s − 19-s + 2.30·21-s − 4.87·23-s + 25-s − 3.58·27-s − 9.58·29-s − 7.17·31-s − 3.58·35-s + 0.945·37-s − 0.871·39-s + 10.4·41-s + 2.71·43-s + 2.58·45-s − 5.89·47-s + 5.87·49-s + 3.58·51-s − 9.81·53-s − 0.642·57-s − 10.1·59-s − 3.28·61-s + ⋯ |
L(s) = 1 | + 0.370·3-s − 0.447·5-s + 1.35·7-s − 0.862·9-s − 0.376·13-s − 0.165·15-s + 1.35·17-s − 0.229·19-s + 0.502·21-s − 1.01·23-s + 0.200·25-s − 0.690·27-s − 1.78·29-s − 1.28·31-s − 0.606·35-s + 0.155·37-s − 0.139·39-s + 1.63·41-s + 0.414·43-s + 0.385·45-s − 0.859·47-s + 0.838·49-s + 0.502·51-s − 1.34·53-s − 0.0850·57-s − 1.32·59-s − 0.420·61-s + ⋯ |
Λ(s)=(=(6080s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(6080s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 19 | 1+T |
good | 3 | 1−0.642T+3T2 |
| 7 | 1−3.58T+7T2 |
| 11 | 1+11T2 |
| 13 | 1+1.35T+13T2 |
| 17 | 1−5.58T+17T2 |
| 23 | 1+4.87T+23T2 |
| 29 | 1+9.58T+29T2 |
| 31 | 1+7.17T+31T2 |
| 37 | 1−0.945T+37T2 |
| 41 | 1−10.4T+41T2 |
| 43 | 1−2.71T+43T2 |
| 47 | 1+5.89T+47T2 |
| 53 | 1+9.81T+53T2 |
| 59 | 1+10.1T+59T2 |
| 61 | 1+3.28T+61T2 |
| 67 | 1+10.3T+67T2 |
| 71 | 1−14.3T+71T2 |
| 73 | 1+4.15T+73T2 |
| 79 | 1−1.28T+79T2 |
| 83 | 1−11.1T+83T2 |
| 89 | 1+6.45T+89T2 |
| 97 | 1+13.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.76594381346805826000289704132, −7.45962995331873622906375596586, −6.11369829933117776505833896818, −5.55074601115719497442076162762, −4.84967987306799960429711169877, −3.97125873834504043717718322731, −3.28742650705999088550005517886, −2.26073590758127434110668982171, −1.47421181480811057726730724861, 0,
1.47421181480811057726730724861, 2.26073590758127434110668982171, 3.28742650705999088550005517886, 3.97125873834504043717718322731, 4.84967987306799960429711169877, 5.55074601115719497442076162762, 6.11369829933117776505833896818, 7.45962995331873622906375596586, 7.76594381346805826000289704132