Properties

Label 2-6069-1.1-c1-0-129
Degree $2$
Conductor $6069$
Sign $-1$
Analytic cond. $48.4612$
Root an. cond. $6.96140$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.176·2-s + 3-s − 1.96·4-s − 4.00·5-s − 0.176·6-s − 7-s + 0.701·8-s + 9-s + 0.708·10-s − 1.64·11-s − 1.96·12-s − 2.11·13-s + 0.176·14-s − 4.00·15-s + 3.81·16-s − 0.176·18-s − 1.44·19-s + 7.88·20-s − 21-s + 0.291·22-s + 6.00·23-s + 0.701·24-s + 11.0·25-s + 0.374·26-s + 27-s + 1.96·28-s + 0.508·29-s + ⋯
L(s)  = 1  − 0.124·2-s + 0.577·3-s − 0.984·4-s − 1.79·5-s − 0.0721·6-s − 0.377·7-s + 0.248·8-s + 0.333·9-s + 0.223·10-s − 0.497·11-s − 0.568·12-s − 0.587·13-s + 0.0472·14-s − 1.03·15-s + 0.953·16-s − 0.0416·18-s − 0.330·19-s + 1.76·20-s − 0.218·21-s + 0.0621·22-s + 1.25·23-s + 0.143·24-s + 2.20·25-s + 0.0733·26-s + 0.192·27-s + 0.372·28-s + 0.0943·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6069\)    =    \(3 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(48.4612\)
Root analytic conductor: \(6.96140\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6069,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 \)
good2 \( 1 + 0.176T + 2T^{2} \)
5 \( 1 + 4.00T + 5T^{2} \)
11 \( 1 + 1.64T + 11T^{2} \)
13 \( 1 + 2.11T + 13T^{2} \)
19 \( 1 + 1.44T + 19T^{2} \)
23 \( 1 - 6.00T + 23T^{2} \)
29 \( 1 - 0.508T + 29T^{2} \)
31 \( 1 - 4.13T + 31T^{2} \)
37 \( 1 + 1.06T + 37T^{2} \)
41 \( 1 - 9.40T + 41T^{2} \)
43 \( 1 + 8.11T + 43T^{2} \)
47 \( 1 + 9.98T + 47T^{2} \)
53 \( 1 - 10.9T + 53T^{2} \)
59 \( 1 + 7.35T + 59T^{2} \)
61 \( 1 - 11.2T + 61T^{2} \)
67 \( 1 + 6.33T + 67T^{2} \)
71 \( 1 - 4.59T + 71T^{2} \)
73 \( 1 - 10.0T + 73T^{2} \)
79 \( 1 + 2.14T + 79T^{2} \)
83 \( 1 - 7.32T + 83T^{2} \)
89 \( 1 - 5.50T + 89T^{2} \)
97 \( 1 - 14.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.915763943918763212138713582015, −7.25987403785015485913643145192, −6.56790580985550735012831004055, −5.20345032786640423959448551209, −4.70984272744255671358479967056, −3.97610195131336213791616737375, −3.37432803623806821659269954330, −2.62133808613398283556574168536, −0.953269429926442961922493914270, 0, 0.953269429926442961922493914270, 2.62133808613398283556574168536, 3.37432803623806821659269954330, 3.97610195131336213791616737375, 4.70984272744255671358479967056, 5.20345032786640423959448551209, 6.56790580985550735012831004055, 7.25987403785015485913643145192, 7.915763943918763212138713582015

Graph of the $Z$-function along the critical line