Properties

Label 2-6069-1.1-c1-0-102
Degree $2$
Conductor $6069$
Sign $1$
Analytic cond. $48.4612$
Root an. cond. $6.96140$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.208·2-s − 3-s − 1.95·4-s + 3.22·5-s + 0.208·6-s − 7-s + 0.824·8-s + 9-s − 0.671·10-s + 5.66·11-s + 1.95·12-s − 0.641·13-s + 0.208·14-s − 3.22·15-s + 3.74·16-s − 0.208·18-s − 0.299·19-s − 6.30·20-s + 21-s − 1.18·22-s + 6.01·23-s − 0.824·24-s + 5.37·25-s + 0.133·26-s − 27-s + 1.95·28-s + 7.63·29-s + ⋯
L(s)  = 1  − 0.147·2-s − 0.577·3-s − 0.978·4-s + 1.44·5-s + 0.0851·6-s − 0.377·7-s + 0.291·8-s + 0.333·9-s − 0.212·10-s + 1.70·11-s + 0.564·12-s − 0.178·13-s + 0.0557·14-s − 0.831·15-s + 0.935·16-s − 0.0491·18-s − 0.0687·19-s − 1.40·20-s + 0.218·21-s − 0.251·22-s + 1.25·23-s − 0.168·24-s + 1.07·25-s + 0.0262·26-s − 0.192·27-s + 0.369·28-s + 1.41·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6069\)    =    \(3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(48.4612\)
Root analytic conductor: \(6.96140\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6069,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.877404250\)
\(L(\frac12)\) \(\approx\) \(1.877404250\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 \)
good2 \( 1 + 0.208T + 2T^{2} \)
5 \( 1 - 3.22T + 5T^{2} \)
11 \( 1 - 5.66T + 11T^{2} \)
13 \( 1 + 0.641T + 13T^{2} \)
19 \( 1 + 0.299T + 19T^{2} \)
23 \( 1 - 6.01T + 23T^{2} \)
29 \( 1 - 7.63T + 29T^{2} \)
31 \( 1 - 5.10T + 31T^{2} \)
37 \( 1 - 2.16T + 37T^{2} \)
41 \( 1 + 3.76T + 41T^{2} \)
43 \( 1 + 4.08T + 43T^{2} \)
47 \( 1 + 2.80T + 47T^{2} \)
53 \( 1 - 7.14T + 53T^{2} \)
59 \( 1 + 2.95T + 59T^{2} \)
61 \( 1 - 3.36T + 61T^{2} \)
67 \( 1 - 16.0T + 67T^{2} \)
71 \( 1 - 8.78T + 71T^{2} \)
73 \( 1 + 15.1T + 73T^{2} \)
79 \( 1 + 1.38T + 79T^{2} \)
83 \( 1 + 11.7T + 83T^{2} \)
89 \( 1 + 10.5T + 89T^{2} \)
97 \( 1 - 18.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.391404525798331131374550213240, −7.06097962800938820657766974337, −6.55907438376364727109839059165, −5.99019170799899709199837029314, −5.19564498438453427136295118275, −4.61356795031147408741402591322, −3.76975418409712001720172549580, −2.75718350751196659181027092164, −1.50331988805979872274544126140, −0.859253747674413634672363499005, 0.859253747674413634672363499005, 1.50331988805979872274544126140, 2.75718350751196659181027092164, 3.76975418409712001720172549580, 4.61356795031147408741402591322, 5.19564498438453427136295118275, 5.99019170799899709199837029314, 6.55907438376364727109839059165, 7.06097962800938820657766974337, 8.391404525798331131374550213240

Graph of the $Z$-function along the critical line