Properties

Label 2-6003-1.1-c1-0-131
Degree $2$
Conductor $6003$
Sign $1$
Analytic cond. $47.9341$
Root an. cond. $6.92345$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.40·2-s + 3.78·4-s − 2.94·5-s + 2.89·7-s + 4.28·8-s − 7.08·10-s + 2.53·11-s + 5.47·13-s + 6.95·14-s + 2.72·16-s + 3.33·17-s − 5.49·19-s − 11.1·20-s + 6.09·22-s − 23-s + 3.68·25-s + 13.1·26-s + 10.9·28-s − 29-s + 5.60·31-s − 1.99·32-s + 8.02·34-s − 8.52·35-s + 4.06·37-s − 13.2·38-s − 12.6·40-s + 9.72·41-s + ⋯
L(s)  = 1  + 1.70·2-s + 1.89·4-s − 1.31·5-s + 1.09·7-s + 1.51·8-s − 2.23·10-s + 0.764·11-s + 1.51·13-s + 1.85·14-s + 0.682·16-s + 0.809·17-s − 1.25·19-s − 2.49·20-s + 1.29·22-s − 0.208·23-s + 0.736·25-s + 2.58·26-s + 2.06·28-s − 0.185·29-s + 1.00·31-s − 0.353·32-s + 1.37·34-s − 1.44·35-s + 0.668·37-s − 2.14·38-s − 1.99·40-s + 1.51·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6003 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6003 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6003\)    =    \(3^{2} \cdot 23 \cdot 29\)
Sign: $1$
Analytic conductor: \(47.9341\)
Root analytic conductor: \(6.92345\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6003,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.848915027\)
\(L(\frac12)\) \(\approx\) \(5.848915027\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 + T \)
29 \( 1 + T \)
good2 \( 1 - 2.40T + 2T^{2} \)
5 \( 1 + 2.94T + 5T^{2} \)
7 \( 1 - 2.89T + 7T^{2} \)
11 \( 1 - 2.53T + 11T^{2} \)
13 \( 1 - 5.47T + 13T^{2} \)
17 \( 1 - 3.33T + 17T^{2} \)
19 \( 1 + 5.49T + 19T^{2} \)
31 \( 1 - 5.60T + 31T^{2} \)
37 \( 1 - 4.06T + 37T^{2} \)
41 \( 1 - 9.72T + 41T^{2} \)
43 \( 1 - 2.73T + 43T^{2} \)
47 \( 1 + 10.0T + 47T^{2} \)
53 \( 1 + 1.45T + 53T^{2} \)
59 \( 1 + 13.0T + 59T^{2} \)
61 \( 1 - 14.3T + 61T^{2} \)
67 \( 1 - 5.14T + 67T^{2} \)
71 \( 1 - 3.43T + 71T^{2} \)
73 \( 1 - 6.90T + 73T^{2} \)
79 \( 1 + 5.51T + 79T^{2} \)
83 \( 1 + 0.148T + 83T^{2} \)
89 \( 1 - 10.6T + 89T^{2} \)
97 \( 1 - 7.16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.096535799075881310961659541597, −7.23058230224886783874242936250, −6.34183450451696268457192564690, −5.97016075762497640550430004087, −4.90484997414720531346627231424, −4.34648614955497208287769134967, −3.85388251124691297737006134477, −3.26934830013435512361120765501, −2.10375909820367311019808793449, −1.05335745834331955540234556291, 1.05335745834331955540234556291, 2.10375909820367311019808793449, 3.26934830013435512361120765501, 3.85388251124691297737006134477, 4.34648614955497208287769134967, 4.90484997414720531346627231424, 5.97016075762497640550430004087, 6.34183450451696268457192564690, 7.23058230224886783874242936250, 8.096535799075881310961659541597

Graph of the $Z$-function along the critical line