Properties

Label 2-6003-1.1-c1-0-119
Degree $2$
Conductor $6003$
Sign $-1$
Analytic cond. $47.9341$
Root an. cond. $6.92345$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.74·2-s + 5.53·4-s − 0.0839·5-s − 2.30·7-s − 9.69·8-s + 0.230·10-s − 4.15·11-s − 0.439·13-s + 6.31·14-s + 15.5·16-s + 0.388·17-s + 5.29·19-s − 0.464·20-s + 11.4·22-s + 23-s − 4.99·25-s + 1.20·26-s − 12.7·28-s − 29-s + 1.44·31-s − 23.2·32-s − 1.06·34-s + 0.193·35-s + 9.04·37-s − 14.5·38-s + 0.814·40-s + 0.159·41-s + ⋯
L(s)  = 1  − 1.94·2-s + 2.76·4-s − 0.0375·5-s − 0.869·7-s − 3.42·8-s + 0.0728·10-s − 1.25·11-s − 0.121·13-s + 1.68·14-s + 3.88·16-s + 0.0941·17-s + 1.21·19-s − 0.103·20-s + 2.43·22-s + 0.208·23-s − 0.998·25-s + 0.236·26-s − 2.40·28-s − 0.185·29-s + 0.258·31-s − 4.11·32-s − 0.182·34-s + 0.0326·35-s + 1.48·37-s − 2.35·38-s + 0.128·40-s + 0.0248·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6003 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6003 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6003\)    =    \(3^{2} \cdot 23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(47.9341\)
Root analytic conductor: \(6.92345\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6003,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 - T \)
29 \( 1 + T \)
good2 \( 1 + 2.74T + 2T^{2} \)
5 \( 1 + 0.0839T + 5T^{2} \)
7 \( 1 + 2.30T + 7T^{2} \)
11 \( 1 + 4.15T + 11T^{2} \)
13 \( 1 + 0.439T + 13T^{2} \)
17 \( 1 - 0.388T + 17T^{2} \)
19 \( 1 - 5.29T + 19T^{2} \)
31 \( 1 - 1.44T + 31T^{2} \)
37 \( 1 - 9.04T + 37T^{2} \)
41 \( 1 - 0.159T + 41T^{2} \)
43 \( 1 + 6.03T + 43T^{2} \)
47 \( 1 - 0.396T + 47T^{2} \)
53 \( 1 + 2.43T + 53T^{2} \)
59 \( 1 - 4.08T + 59T^{2} \)
61 \( 1 - 9.28T + 61T^{2} \)
67 \( 1 - 4.55T + 67T^{2} \)
71 \( 1 - 3.85T + 71T^{2} \)
73 \( 1 - 0.0113T + 73T^{2} \)
79 \( 1 - 9.57T + 79T^{2} \)
83 \( 1 - 5.55T + 83T^{2} \)
89 \( 1 - 4.02T + 89T^{2} \)
97 \( 1 + 19.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.933581117035656969101716950870, −7.28726973238515822076960300116, −6.61874725167955222645815994048, −5.89658764947822462615311328360, −5.16147940895514354099854802522, −3.59224061790230332320120049010, −2.84372850604105260583914244069, −2.17074186362400139921519542904, −0.958359351450519008807245281192, 0, 0.958359351450519008807245281192, 2.17074186362400139921519542904, 2.84372850604105260583914244069, 3.59224061790230332320120049010, 5.16147940895514354099854802522, 5.89658764947822462615311328360, 6.61874725167955222645815994048, 7.28726973238515822076960300116, 7.933581117035656969101716950870

Graph of the $Z$-function along the critical line