Properties

Label 2-6003-1.1-c1-0-113
Degree $2$
Conductor $6003$
Sign $1$
Analytic cond. $47.9341$
Root an. cond. $6.92345$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.77·2-s + 5.68·4-s − 2.29·5-s − 5.27·7-s + 10.2·8-s − 6.36·10-s − 1.67·11-s + 3.70·13-s − 14.6·14-s + 16.9·16-s + 2.24·17-s + 3.22·19-s − 13.0·20-s − 4.65·22-s + 23-s + 0.279·25-s + 10.2·26-s − 29.9·28-s + 29-s + 5.83·31-s + 26.4·32-s + 6.22·34-s + 12.1·35-s − 1.40·37-s + 8.93·38-s − 23.4·40-s + 7.14·41-s + ⋯
L(s)  = 1  + 1.95·2-s + 2.84·4-s − 1.02·5-s − 1.99·7-s + 3.60·8-s − 2.01·10-s − 0.506·11-s + 1.02·13-s − 3.90·14-s + 4.23·16-s + 0.544·17-s + 0.739·19-s − 2.91·20-s − 0.991·22-s + 0.208·23-s + 0.0559·25-s + 2.01·26-s − 5.66·28-s + 0.185·29-s + 1.04·31-s + 4.68·32-s + 1.06·34-s + 2.04·35-s − 0.231·37-s + 1.44·38-s − 3.70·40-s + 1.11·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6003 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6003 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6003\)    =    \(3^{2} \cdot 23 \cdot 29\)
Sign: $1$
Analytic conductor: \(47.9341\)
Root analytic conductor: \(6.92345\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6003,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.471080807\)
\(L(\frac12)\) \(\approx\) \(5.471080807\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 - T \)
29 \( 1 - T \)
good2 \( 1 - 2.77T + 2T^{2} \)
5 \( 1 + 2.29T + 5T^{2} \)
7 \( 1 + 5.27T + 7T^{2} \)
11 \( 1 + 1.67T + 11T^{2} \)
13 \( 1 - 3.70T + 13T^{2} \)
17 \( 1 - 2.24T + 17T^{2} \)
19 \( 1 - 3.22T + 19T^{2} \)
31 \( 1 - 5.83T + 31T^{2} \)
37 \( 1 + 1.40T + 37T^{2} \)
41 \( 1 - 7.14T + 41T^{2} \)
43 \( 1 - 8.82T + 43T^{2} \)
47 \( 1 + 10.7T + 47T^{2} \)
53 \( 1 - 10.6T + 53T^{2} \)
59 \( 1 - 5.86T + 59T^{2} \)
61 \( 1 - 4.02T + 61T^{2} \)
67 \( 1 + 4.06T + 67T^{2} \)
71 \( 1 + 8.18T + 71T^{2} \)
73 \( 1 + 1.30T + 73T^{2} \)
79 \( 1 - 9.03T + 79T^{2} \)
83 \( 1 - 1.52T + 83T^{2} \)
89 \( 1 + 14.5T + 89T^{2} \)
97 \( 1 - 8.58T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60169489392381332675419446979, −7.18318377900730666643651641034, −6.34969970655714765392750752813, −5.96671739307184554719313290950, −5.20616468884521723501769202614, −4.17833748175603285243989478413, −3.70166032761857087576812611352, −3.13570643454235548727931650349, −2.55386795489259107811746941793, −0.911544475283816709608484356413, 0.911544475283816709608484356413, 2.55386795489259107811746941793, 3.13570643454235548727931650349, 3.70166032761857087576812611352, 4.17833748175603285243989478413, 5.20616468884521723501769202614, 5.96671739307184554719313290950, 6.34969970655714765392750752813, 7.18318377900730666643651641034, 7.60169489392381332675419446979

Graph of the $Z$-function along the critical line