L(s) = 1 | + (1.39 + 0.221i)2-s + (−0.786 − 1.54i)3-s + (1.90 + 0.618i)4-s + (−1.93 + 1.12i)5-s + (−0.756 − 2.32i)6-s + (3.72 + 3.72i)7-s + (2.52 + 1.28i)8-s + (−1.76 + 2.42i)9-s + (−2.94 + 1.14i)10-s + (−3.48 + 2.53i)11-s + (−0.541 − 3.42i)12-s + (4.38 + 6.03i)14-s + (3.25 + 2.09i)15-s + (3.23 + 2.35i)16-s + (−2.99 + 3i)18-s + ⋯ |
L(s) = 1 | + (0.987 + 0.156i)2-s + (−0.453 − 0.891i)3-s + (0.951 + 0.309i)4-s + (−0.863 + 0.503i)5-s + (−0.309 − 0.951i)6-s + (1.40 + 1.40i)7-s + (0.891 + 0.453i)8-s + (−0.587 + 0.809i)9-s + (−0.932 + 0.362i)10-s + (−1.05 + 0.763i)11-s + (−0.156 − 0.987i)12-s + (1.17 + 1.61i)14-s + (0.840 + 0.541i)15-s + (0.809 + 0.587i)16-s + (−0.707 + 0.707i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.647 - 0.762i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.647 - 0.762i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.97375 + 0.913321i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.97375 + 0.913321i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.39 - 0.221i)T \) |
| 3 | \( 1 + (0.786 + 1.54i)T \) |
| 5 | \( 1 + (1.93 - 1.12i)T \) |
good | 7 | \( 1 + (-3.72 - 3.72i)T + 7iT^{2} \) |
| 11 | \( 1 + (3.48 - 2.53i)T + (3.39 - 10.4i)T^{2} \) |
| 13 | \( 1 + (-12.3 + 4.01i)T^{2} \) |
| 17 | \( 1 + (9.99 + 13.7i)T^{2} \) |
| 19 | \( 1 + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (21.8 + 7.10i)T^{2} \) |
| 29 | \( 1 + (-8.89 - 2.88i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (3.40 + 10.4i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (35.1 - 11.4i)T^{2} \) |
| 41 | \( 1 + (-12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 43iT^{2} \) |
| 47 | \( 1 + (-27.6 + 38.0i)T^{2} \) |
| 53 | \( 1 + (2.50 + 4.90i)T + (-31.1 + 42.8i)T^{2} \) |
| 59 | \( 1 + (-5.61 + 7.72i)T + (-18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (39.3 + 54.2i)T^{2} \) |
| 71 | \( 1 + (57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (0.464 - 2.93i)T + (-69.4 - 22.5i)T^{2} \) |
| 79 | \( 1 + (5.71 + 1.85i)T + (63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (13.1 + 6.68i)T + (48.7 + 67.1i)T^{2} \) |
| 89 | \( 1 + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (-6.33 + 3.22i)T + (57.0 - 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36099336465699744959585035645, −10.39516706084236949888702895502, −8.461609023712259972448505168626, −7.900480190320614053381661806664, −7.23510287636725092999554578765, −6.12724537088375012160055753935, −5.22805457061458657094229977902, −4.55821375408455091607584557789, −2.77183182461067812462264464172, −2.00817711037169617720739150490,
0.995648418896374232789093690326, 3.17419638630023707731814996253, 4.18087059273535018442586525706, 4.78179625251166293800024412009, 5.45637378597326534146631625530, 6.89550306795443290327417643838, 7.84970033893349963681662023553, 8.592330132285158646472188292981, 10.34360044970216043700425220333, 10.63853370142658048873414692725