L(s) = 1 | + (1.39 + 0.221i)2-s + (−0.786 − 1.54i)3-s + (1.90 + 0.618i)4-s + (−1.93 + 1.12i)5-s + (−0.756 − 2.32i)6-s + (3.72 + 3.72i)7-s + (2.52 + 1.28i)8-s + (−1.76 + 2.42i)9-s + (−2.94 + 1.14i)10-s + (−3.48 + 2.53i)11-s + (−0.541 − 3.42i)12-s + (4.38 + 6.03i)14-s + (3.25 + 2.09i)15-s + (3.23 + 2.35i)16-s + (−2.99 + 3i)18-s + ⋯ |
L(s) = 1 | + (0.987 + 0.156i)2-s + (−0.453 − 0.891i)3-s + (0.951 + 0.309i)4-s + (−0.863 + 0.503i)5-s + (−0.309 − 0.951i)6-s + (1.40 + 1.40i)7-s + (0.891 + 0.453i)8-s + (−0.587 + 0.809i)9-s + (−0.932 + 0.362i)10-s + (−1.05 + 0.763i)11-s + (−0.156 − 0.987i)12-s + (1.17 + 1.61i)14-s + (0.840 + 0.541i)15-s + (0.809 + 0.587i)16-s + (−0.707 + 0.707i)18-s + ⋯ |
Λ(s)=(=(600s/2ΓC(s)L(s)(0.647−0.762i)Λ(2−s)
Λ(s)=(=(600s/2ΓC(s+1/2)L(s)(0.647−0.762i)Λ(1−s)
Degree: |
2 |
Conductor: |
600
= 23⋅3⋅52
|
Sign: |
0.647−0.762i
|
Analytic conductor: |
4.79102 |
Root analytic conductor: |
2.18884 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ600(77,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 600, ( :1/2), 0.647−0.762i)
|
Particular Values
L(1) |
≈ |
1.97375+0.913321i |
L(21) |
≈ |
1.97375+0.913321i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.39−0.221i)T |
| 3 | 1+(0.786+1.54i)T |
| 5 | 1+(1.93−1.12i)T |
good | 7 | 1+(−3.72−3.72i)T+7iT2 |
| 11 | 1+(3.48−2.53i)T+(3.39−10.4i)T2 |
| 13 | 1+(−12.3+4.01i)T2 |
| 17 | 1+(9.99+13.7i)T2 |
| 19 | 1+(−15.3+11.1i)T2 |
| 23 | 1+(21.8+7.10i)T2 |
| 29 | 1+(−8.89−2.88i)T+(23.4+17.0i)T2 |
| 31 | 1+(3.40+10.4i)T+(−25.0+18.2i)T2 |
| 37 | 1+(35.1−11.4i)T2 |
| 41 | 1+(−12.6−38.9i)T2 |
| 43 | 1+43iT2 |
| 47 | 1+(−27.6+38.0i)T2 |
| 53 | 1+(2.50+4.90i)T+(−31.1+42.8i)T2 |
| 59 | 1+(−5.61+7.72i)T+(−18.2−56.1i)T2 |
| 61 | 1+(−18.8+58.0i)T2 |
| 67 | 1+(39.3+54.2i)T2 |
| 71 | 1+(57.4+41.7i)T2 |
| 73 | 1+(0.464−2.93i)T+(−69.4−22.5i)T2 |
| 79 | 1+(5.71+1.85i)T+(63.9+46.4i)T2 |
| 83 | 1+(13.1+6.68i)T+(48.7+67.1i)T2 |
| 89 | 1+(27.5−84.6i)T2 |
| 97 | 1+(−6.33+3.22i)T+(57.0−78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.36099336465699744959585035645, −10.39516706084236949888702895502, −8.461609023712259972448505168626, −7.900480190320614053381661806664, −7.23510287636725092999554578765, −6.12724537088375012160055753935, −5.22805457061458657094229977902, −4.55821375408455091607584557789, −2.77183182461067812462264464172, −2.00817711037169617720739150490,
0.995648418896374232789093690326, 3.17419638630023707731814996253, 4.18087059273535018442586525706, 4.78179625251166293800024412009, 5.45637378597326534146631625530, 6.89550306795443290327417643838, 7.84970033893349963681662023553, 8.592330132285158646472188292981, 10.34360044970216043700425220333, 10.63853370142658048873414692725