L(s) = 1 | − 3i·3-s + 5i·7-s − 9·9-s + 14·11-s − i·13-s + 46i·17-s − 19·19-s + 15·21-s + 46i·23-s + 27i·27-s − 14·29-s + 133·31-s − 42i·33-s + 258i·37-s − 3·39-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 0.269i·7-s − 0.333·9-s + 0.383·11-s − 0.0213i·13-s + 0.656i·17-s − 0.229·19-s + 0.155·21-s + 0.417i·23-s + 0.192i·27-s − 0.0896·29-s + 0.770·31-s − 0.221i·33-s + 1.14i·37-s − 0.0123·39-s + ⋯ |
Λ(s)=(=(600s/2ΓC(s)L(s)(0.894−0.447i)Λ(4−s)
Λ(s)=(=(600s/2ΓC(s+3/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
600
= 23⋅3⋅52
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
35.4011 |
Root analytic conductor: |
5.94988 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ600(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 600, ( :3/2), 0.894−0.447i)
|
Particular Values
L(2) |
≈ |
1.772316565 |
L(21) |
≈ |
1.772316565 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3iT |
| 5 | 1 |
good | 7 | 1−5iT−343T2 |
| 11 | 1−14T+1.33e3T2 |
| 13 | 1+iT−2.19e3T2 |
| 17 | 1−46iT−4.91e3T2 |
| 19 | 1+19T+6.85e3T2 |
| 23 | 1−46iT−1.21e4T2 |
| 29 | 1+14T+2.43e4T2 |
| 31 | 1−133T+2.97e4T2 |
| 37 | 1−258iT−5.06e4T2 |
| 41 | 1−84T+6.89e4T2 |
| 43 | 1−167iT−7.95e4T2 |
| 47 | 1−410iT−1.03e5T2 |
| 53 | 1+456iT−1.48e5T2 |
| 59 | 1−194T+2.05e5T2 |
| 61 | 1+17T+2.26e5T2 |
| 67 | 1−653iT−3.00e5T2 |
| 71 | 1−828T+3.57e5T2 |
| 73 | 1+570iT−3.89e5T2 |
| 79 | 1−552T+4.93e5T2 |
| 83 | 1+142iT−5.71e5T2 |
| 89 | 1−1.10e3T+7.04e5T2 |
| 97 | 1−841iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.33632274258952882546110309110, −9.388110656755244807452141179795, −8.478318440346804837615389793335, −7.73148481151146225187159570789, −6.64919088844804273824691245604, −5.96241722043928980122202333366, −4.78930129485965841094195935731, −3.55071016051753500917026201096, −2.29904763295894959878539969108, −1.06905548052865161491382716048,
0.61610103676195062383139678494, 2.32168395748992946324983042550, 3.60669195043565804127643780183, 4.50809847561764285088880805692, 5.52111305824844172373223341601, 6.58902989762741280644121028035, 7.52872087305653300171032780579, 8.612421736483666771433280564708, 9.342480210181074280669813404427, 10.22257743998145646090133329610