L(s) = 1 | − 3i·3-s + 5i·7-s − 9·9-s + 14·11-s − i·13-s + 46i·17-s − 19·19-s + 15·21-s + 46i·23-s + 27i·27-s − 14·29-s + 133·31-s − 42i·33-s + 258i·37-s − 3·39-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 0.269i·7-s − 0.333·9-s + 0.383·11-s − 0.0213i·13-s + 0.656i·17-s − 0.229·19-s + 0.155·21-s + 0.417i·23-s + 0.192i·27-s − 0.0896·29-s + 0.770·31-s − 0.221i·33-s + 1.14i·37-s − 0.0123·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.772316565\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.772316565\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 5iT - 343T^{2} \) |
| 11 | \( 1 - 14T + 1.33e3T^{2} \) |
| 13 | \( 1 + iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 46iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 19T + 6.85e3T^{2} \) |
| 23 | \( 1 - 46iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 14T + 2.43e4T^{2} \) |
| 31 | \( 1 - 133T + 2.97e4T^{2} \) |
| 37 | \( 1 - 258iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 84T + 6.89e4T^{2} \) |
| 43 | \( 1 - 167iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 410iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 456iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 194T + 2.05e5T^{2} \) |
| 61 | \( 1 + 17T + 2.26e5T^{2} \) |
| 67 | \( 1 - 653iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 828T + 3.57e5T^{2} \) |
| 73 | \( 1 + 570iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 552T + 4.93e5T^{2} \) |
| 83 | \( 1 + 142iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.10e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 841iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33632274258952882546110309110, −9.388110656755244807452141179795, −8.478318440346804837615389793335, −7.73148481151146225187159570789, −6.64919088844804273824691245604, −5.96241722043928980122202333366, −4.78930129485965841094195935731, −3.55071016051753500917026201096, −2.29904763295894959878539969108, −1.06905548052865161491382716048,
0.61610103676195062383139678494, 2.32168395748992946324983042550, 3.60669195043565804127643780183, 4.50809847561764285088880805692, 5.52111305824844172373223341601, 6.58902989762741280644121028035, 7.52872087305653300171032780579, 8.612421736483666771433280564708, 9.342480210181074280669813404427, 10.22257743998145646090133329610