Properties

Label 2-600-120.53-c1-0-39
Degree $2$
Conductor $600$
Sign $0.525 + 0.850i$
Analytic cond. $4.79102$
Root an. cond. $2.18884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + i)2-s + (−1.22 − 1.22i)3-s − 2i·4-s + 2.44·6-s + (3.44 − 3.44i)7-s + (2 + 2i)8-s + 2.99i·9-s + 1.55·11-s + (−2.44 + 2.44i)12-s + 6.89i·14-s − 4·16-s + (−2.99 − 2.99i)18-s − 8.44·21-s + (−1.55 + 1.55i)22-s − 4.89i·24-s + ⋯
L(s)  = 1  + (−0.707 + 0.707i)2-s + (−0.707 − 0.707i)3-s i·4-s + 0.999·6-s + (1.30 − 1.30i)7-s + (0.707 + 0.707i)8-s + 0.999i·9-s + 0.467·11-s + (−0.707 + 0.707i)12-s + 1.84i·14-s − 16-s + (−0.707 − 0.707i)18-s − 1.84·21-s + (−0.330 + 0.330i)22-s − 0.999i·24-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 + 0.850i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $0.525 + 0.850i$
Analytic conductor: \(4.79102\)
Root analytic conductor: \(2.18884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{600} (293, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 600,\ (\ :1/2),\ 0.525 + 0.850i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.784488 - 0.437380i\)
\(L(\frac12)\) \(\approx\) \(0.784488 - 0.437380i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1 - i)T \)
3 \( 1 + (1.22 + 1.22i)T \)
5 \( 1 \)
good7 \( 1 + (-3.44 + 3.44i)T - 7iT^{2} \)
11 \( 1 - 1.55T + 11T^{2} \)
13 \( 1 - 13iT^{2} \)
17 \( 1 + 17iT^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 23iT^{2} \)
29 \( 1 + 5.34iT - 29T^{2} \)
31 \( 1 - 4.89T + 31T^{2} \)
37 \( 1 + 37iT^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 - 43iT^{2} \)
47 \( 1 + 47iT^{2} \)
53 \( 1 + (2.44 + 2.44i)T + 53iT^{2} \)
59 \( 1 + 15.3iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 + 67iT^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + (11.8 + 11.8i)T + 73iT^{2} \)
79 \( 1 - 14.6iT - 79T^{2} \)
83 \( 1 + (-4 - 4i)T + 83iT^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + (8.79 - 8.79i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.59192115481690591893328708552, −9.732550975892989242542632221219, −8.345695090598626871958649770159, −7.82665556488751458369033807556, −7.04057098920862255678748749343, −6.27071516146700591994077048588, −5.12390441831801024183499735027, −4.33095519868326383186402466556, −1.85002080543130363494218525620, −0.792171014388010220229700700432, 1.44150347672323802627405578243, 2.85433170204208892074268218745, 4.24663673862350298665058198454, 5.10209585688561658187757202988, 6.17844439028900741561326201202, 7.47226484234625763329023682085, 8.659651388033960873753009523176, 8.983837672549506152923478373205, 10.05746930216879382778843110968, 10.84842078871719229486328977163

Graph of the $Z$-function along the critical line