L(s) = 1 | + (−1.41 − 0.0941i)2-s + (1.68 + 0.416i)3-s + (1.98 + 0.265i)4-s + (−2.33 − 0.746i)6-s + (0.361 − 0.361i)7-s + (−2.77 − 0.561i)8-s + (2.65 + 1.40i)9-s − 2.63·11-s + (3.22 + 1.27i)12-s + (3.49 − 3.49i)13-s + (−0.544 + 0.476i)14-s + (3.85 + 1.05i)16-s + (3.61 + 3.61i)17-s + (−3.61 − 2.22i)18-s + 0.672·19-s + ⋯ |
L(s) = 1 | + (−0.997 − 0.0665i)2-s + (0.970 + 0.240i)3-s + (0.991 + 0.132i)4-s + (−0.952 − 0.304i)6-s + (0.136 − 0.136i)7-s + (−0.980 − 0.198i)8-s + (0.884 + 0.466i)9-s − 0.794·11-s + (0.930 + 0.367i)12-s + (0.968 − 0.968i)13-s + (−0.145 + 0.127i)14-s + (0.964 + 0.263i)16-s + (0.876 + 0.876i)17-s + (−0.851 − 0.524i)18-s + 0.154·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.110i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.110i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.42061 + 0.0787758i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42061 + 0.0787758i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.41 + 0.0941i)T \) |
| 3 | \( 1 + (-1.68 - 0.416i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.361 + 0.361i)T - 7iT^{2} \) |
| 11 | \( 1 + 2.63T + 11T^{2} \) |
| 13 | \( 1 + (-3.49 + 3.49i)T - 13iT^{2} \) |
| 17 | \( 1 + (-3.61 - 3.61i)T + 17iT^{2} \) |
| 19 | \( 1 - 0.672T + 19T^{2} \) |
| 23 | \( 1 + (-4.31 + 4.31i)T - 23iT^{2} \) |
| 29 | \( 1 - 4.76iT - 29T^{2} \) |
| 31 | \( 1 - 3.73T + 31T^{2} \) |
| 37 | \( 1 + (2.82 + 2.82i)T + 37iT^{2} \) |
| 41 | \( 1 + 4.10iT - 41T^{2} \) |
| 43 | \( 1 + (7.57 - 7.57i)T - 43iT^{2} \) |
| 47 | \( 1 + (-0.987 - 0.987i)T + 47iT^{2} \) |
| 53 | \( 1 + (-0.646 - 0.646i)T + 53iT^{2} \) |
| 59 | \( 1 + 4.92iT - 59T^{2} \) |
| 61 | \( 1 + 6.07iT - 61T^{2} \) |
| 67 | \( 1 + (0.349 + 0.349i)T + 67iT^{2} \) |
| 71 | \( 1 + 8.63iT - 71T^{2} \) |
| 73 | \( 1 + (-11.3 - 11.3i)T + 73iT^{2} \) |
| 79 | \( 1 - 4.07iT - 79T^{2} \) |
| 83 | \( 1 + (8.53 + 8.53i)T + 83iT^{2} \) |
| 89 | \( 1 - 6.58T + 89T^{2} \) |
| 97 | \( 1 + (-0.660 + 0.660i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.53633245897462627745899312277, −9.830292482524866035717294741819, −8.760396333619691875683021125210, −8.199581842827251936163753125546, −7.57156926680884230812285766152, −6.43255774583906904131562379607, −5.18593353371116194930067391239, −3.57768850112161648864950391889, −2.76868455813392506192189378834, −1.30496208345299239561107154854,
1.29448400792537772707217103357, 2.54823178778749572254584519464, 3.58333746212578970381938811644, 5.24388026268207287662242193401, 6.54303380975747144707613570309, 7.34619440782252504666114363194, 8.134963657805176055581100283836, 8.844362306720506324449438863512, 9.624444906922216760209048186542, 10.33271873120571083040123758700