L(s) = 1 | + (0.178 + 1.40i)2-s + (−1.22 − 1.22i)3-s + (−1.93 + 0.5i)4-s + (1.5 − 1.93i)6-s + (−1.04 − 2.62i)8-s + 2.99i·9-s + (2.98 + 1.75i)12-s + (3.50 − 1.93i)16-s + (−3.16 − 3.16i)17-s + (−4.20 + 0.534i)18-s + 7.74·19-s + (6.32 − 6.32i)23-s + (−1.93 + 4.5i)24-s + (3.67 − 3.67i)27-s + 8·31-s + (3.34 + 4.56i)32-s + ⋯ |
L(s) = 1 | + (0.126 + 0.992i)2-s + (−0.707 − 0.707i)3-s + (−0.968 + 0.250i)4-s + (0.612 − 0.790i)6-s + (−0.370 − 0.929i)8-s + 0.999i·9-s + (0.861 + 0.507i)12-s + (0.875 − 0.484i)16-s + (−0.766 − 0.766i)17-s + (−0.992 + 0.126i)18-s + 1.77·19-s + (1.31 − 1.31i)23-s + (−0.395 + 0.918i)24-s + (0.707 − 0.707i)27-s + 1.43·31-s + (0.590 + 0.807i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.146i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 - 0.146i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.05496 + 0.0777841i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.05496 + 0.0777841i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.178 - 1.40i)T \) |
| 3 | \( 1 + (1.22 + 1.22i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 - 13iT^{2} \) |
| 17 | \( 1 + (3.16 + 3.16i)T + 17iT^{2} \) |
| 19 | \( 1 - 7.74T + 19T^{2} \) |
| 23 | \( 1 + (-6.32 + 6.32i)T - 23iT^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 8T + 31T^{2} \) |
| 37 | \( 1 + 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 43iT^{2} \) |
| 47 | \( 1 + (6.32 + 6.32i)T + 47iT^{2} \) |
| 53 | \( 1 + (-9.79 - 9.79i)T + 53iT^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + 15.4iT - 61T^{2} \) |
| 67 | \( 1 + 67iT^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + 73iT^{2} \) |
| 79 | \( 1 + 16iT - 79T^{2} \) |
| 83 | \( 1 + (-2.44 - 2.44i)T + 83iT^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73009852482434333260872722446, −9.654574202919115984402661919473, −8.718611689843057222673221640609, −7.75604374092001356850588941290, −6.99291522231764822560024682752, −6.33978130901950911568901119356, −5.23844014303790244045494032078, −4.61534852005260949408034606767, −2.89788554579549637817478248834, −0.801214640041420657264453755360,
1.15311280498200147639066633316, 2.98470978950429566816199685167, 3.93987487354602016423689653805, 4.98953113490521539399984650163, 5.67061645657280291423551864772, 6.93247253439665083644703334384, 8.340184307364441731934559591853, 9.319710971456120737504550329332, 9.888711432707696446129807900324, 10.73230922500988653978253387651