L(s) = 1 | − 3·3-s + 24·7-s + 9·9-s − 28·11-s + 74·13-s − 82·17-s + 92·19-s − 72·21-s − 8·23-s − 27·27-s − 138·29-s + 80·31-s + 84·33-s − 30·37-s − 222·39-s + 282·41-s − 4·43-s − 240·47-s + 233·49-s + 246·51-s + 130·53-s − 276·57-s + 596·59-s − 218·61-s + 216·63-s + 436·67-s + 24·69-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.29·7-s + 1/3·9-s − 0.767·11-s + 1.57·13-s − 1.16·17-s + 1.11·19-s − 0.748·21-s − 0.0725·23-s − 0.192·27-s − 0.883·29-s + 0.463·31-s + 0.443·33-s − 0.133·37-s − 0.911·39-s + 1.07·41-s − 0.0141·43-s − 0.744·47-s + 0.679·49-s + 0.675·51-s + 0.336·53-s − 0.641·57-s + 1.31·59-s − 0.457·61-s + 0.431·63-s + 0.795·67-s + 0.0418·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.928208068\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.928208068\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + p T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 24 T + p^{3} T^{2} \) |
| 11 | \( 1 + 28 T + p^{3} T^{2} \) |
| 13 | \( 1 - 74 T + p^{3} T^{2} \) |
| 17 | \( 1 + 82 T + p^{3} T^{2} \) |
| 19 | \( 1 - 92 T + p^{3} T^{2} \) |
| 23 | \( 1 + 8 T + p^{3} T^{2} \) |
| 29 | \( 1 + 138 T + p^{3} T^{2} \) |
| 31 | \( 1 - 80 T + p^{3} T^{2} \) |
| 37 | \( 1 + 30 T + p^{3} T^{2} \) |
| 41 | \( 1 - 282 T + p^{3} T^{2} \) |
| 43 | \( 1 + 4 T + p^{3} T^{2} \) |
| 47 | \( 1 + 240 T + p^{3} T^{2} \) |
| 53 | \( 1 - 130 T + p^{3} T^{2} \) |
| 59 | \( 1 - 596 T + p^{3} T^{2} \) |
| 61 | \( 1 + 218 T + p^{3} T^{2} \) |
| 67 | \( 1 - 436 T + p^{3} T^{2} \) |
| 71 | \( 1 - 856 T + p^{3} T^{2} \) |
| 73 | \( 1 - 998 T + p^{3} T^{2} \) |
| 79 | \( 1 + 32 T + p^{3} T^{2} \) |
| 83 | \( 1 - 1508 T + p^{3} T^{2} \) |
| 89 | \( 1 + 246 T + p^{3} T^{2} \) |
| 97 | \( 1 + 866 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57019342725302538270023012424, −9.370127133152483918207890587415, −8.380065520221327281264298396348, −7.71289718518656898619825265009, −6.58725397791577455460013079240, −5.57084276231146608224523748329, −4.82366423283596447473635762626, −3.72300527212293946505667702472, −2.09444546061579446526958323399, −0.890704268512275218823788069009,
0.890704268512275218823788069009, 2.09444546061579446526958323399, 3.72300527212293946505667702472, 4.82366423283596447473635762626, 5.57084276231146608224523748329, 6.58725397791577455460013079240, 7.71289718518656898619825265009, 8.380065520221327281264298396348, 9.370127133152483918207890587415, 10.57019342725302538270023012424