Properties

Label 2-600-1.1-c3-0-7
Degree $2$
Conductor $600$
Sign $1$
Analytic cond. $35.4011$
Root an. cond. $5.94988$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 24·7-s + 9·9-s − 28·11-s + 74·13-s − 82·17-s + 92·19-s − 72·21-s − 8·23-s − 27·27-s − 138·29-s + 80·31-s + 84·33-s − 30·37-s − 222·39-s + 282·41-s − 4·43-s − 240·47-s + 233·49-s + 246·51-s + 130·53-s − 276·57-s + 596·59-s − 218·61-s + 216·63-s + 436·67-s + 24·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.29·7-s + 1/3·9-s − 0.767·11-s + 1.57·13-s − 1.16·17-s + 1.11·19-s − 0.748·21-s − 0.0725·23-s − 0.192·27-s − 0.883·29-s + 0.463·31-s + 0.443·33-s − 0.133·37-s − 0.911·39-s + 1.07·41-s − 0.0141·43-s − 0.744·47-s + 0.679·49-s + 0.675·51-s + 0.336·53-s − 0.641·57-s + 1.31·59-s − 0.457·61-s + 0.431·63-s + 0.795·67-s + 0.0418·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(35.4011\)
Root analytic conductor: \(5.94988\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 600,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.928208068\)
\(L(\frac12)\) \(\approx\) \(1.928208068\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 \)
good7 \( 1 - 24 T + p^{3} T^{2} \)
11 \( 1 + 28 T + p^{3} T^{2} \)
13 \( 1 - 74 T + p^{3} T^{2} \)
17 \( 1 + 82 T + p^{3} T^{2} \)
19 \( 1 - 92 T + p^{3} T^{2} \)
23 \( 1 + 8 T + p^{3} T^{2} \)
29 \( 1 + 138 T + p^{3} T^{2} \)
31 \( 1 - 80 T + p^{3} T^{2} \)
37 \( 1 + 30 T + p^{3} T^{2} \)
41 \( 1 - 282 T + p^{3} T^{2} \)
43 \( 1 + 4 T + p^{3} T^{2} \)
47 \( 1 + 240 T + p^{3} T^{2} \)
53 \( 1 - 130 T + p^{3} T^{2} \)
59 \( 1 - 596 T + p^{3} T^{2} \)
61 \( 1 + 218 T + p^{3} T^{2} \)
67 \( 1 - 436 T + p^{3} T^{2} \)
71 \( 1 - 856 T + p^{3} T^{2} \)
73 \( 1 - 998 T + p^{3} T^{2} \)
79 \( 1 + 32 T + p^{3} T^{2} \)
83 \( 1 - 1508 T + p^{3} T^{2} \)
89 \( 1 + 246 T + p^{3} T^{2} \)
97 \( 1 + 866 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.57019342725302538270023012424, −9.370127133152483918207890587415, −8.380065520221327281264298396348, −7.71289718518656898619825265009, −6.58725397791577455460013079240, −5.57084276231146608224523748329, −4.82366423283596447473635762626, −3.72300527212293946505667702472, −2.09444546061579446526958323399, −0.890704268512275218823788069009, 0.890704268512275218823788069009, 2.09444546061579446526958323399, 3.72300527212293946505667702472, 4.82366423283596447473635762626, 5.57084276231146608224523748329, 6.58725397791577455460013079240, 7.71289718518656898619825265009, 8.380065520221327281264298396348, 9.370127133152483918207890587415, 10.57019342725302538270023012424

Graph of the $Z$-function along the critical line