Properties

Label 2-600-1.1-c3-0-27
Degree $2$
Conductor $600$
Sign $-1$
Analytic cond. $35.4011$
Root an. cond. $5.94988$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 10·7-s + 9·9-s − 14·11-s − 82·13-s + 18·17-s − 136·19-s + 30·21-s − 140·23-s + 27·27-s + 112·29-s + 72·31-s − 42·33-s + 26·37-s − 246·39-s − 446·41-s + 396·43-s − 144·47-s − 243·49-s + 54·51-s + 158·53-s − 408·57-s − 342·59-s + 314·61-s + 90·63-s − 152·67-s − 420·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.539·7-s + 1/3·9-s − 0.383·11-s − 1.74·13-s + 0.256·17-s − 1.64·19-s + 0.311·21-s − 1.26·23-s + 0.192·27-s + 0.717·29-s + 0.417·31-s − 0.221·33-s + 0.115·37-s − 1.01·39-s − 1.69·41-s + 1.40·43-s − 0.446·47-s − 0.708·49-s + 0.148·51-s + 0.409·53-s − 0.948·57-s − 0.754·59-s + 0.659·61-s + 0.179·63-s − 0.277·67-s − 0.732·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(35.4011\)
Root analytic conductor: \(5.94988\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 600,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 \)
good7 \( 1 - 10 T + p^{3} T^{2} \)
11 \( 1 + 14 T + p^{3} T^{2} \)
13 \( 1 + 82 T + p^{3} T^{2} \)
17 \( 1 - 18 T + p^{3} T^{2} \)
19 \( 1 + 136 T + p^{3} T^{2} \)
23 \( 1 + 140 T + p^{3} T^{2} \)
29 \( 1 - 112 T + p^{3} T^{2} \)
31 \( 1 - 72 T + p^{3} T^{2} \)
37 \( 1 - 26 T + p^{3} T^{2} \)
41 \( 1 + 446 T + p^{3} T^{2} \)
43 \( 1 - 396 T + p^{3} T^{2} \)
47 \( 1 + 144 T + p^{3} T^{2} \)
53 \( 1 - 158 T + p^{3} T^{2} \)
59 \( 1 + 342 T + p^{3} T^{2} \)
61 \( 1 - 314 T + p^{3} T^{2} \)
67 \( 1 + 152 T + p^{3} T^{2} \)
71 \( 1 + 932 T + p^{3} T^{2} \)
73 \( 1 + 548 T + p^{3} T^{2} \)
79 \( 1 + 512 T + p^{3} T^{2} \)
83 \( 1 - 284 T + p^{3} T^{2} \)
89 \( 1 + 810 T + p^{3} T^{2} \)
97 \( 1 - 1304 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.996212525013104910012155093589, −8.827560756351837793419150428842, −8.065542766505303470110054412559, −7.34921525731902082441982806981, −6.25133811720376164162224463118, −4.97316070405265128123452208969, −4.22429663654816161189254778080, −2.76333385498009938861823142694, −1.88396817716477764064835813873, 0, 1.88396817716477764064835813873, 2.76333385498009938861823142694, 4.22429663654816161189254778080, 4.97316070405265128123452208969, 6.25133811720376164162224463118, 7.34921525731902082441982806981, 8.065542766505303470110054412559, 8.827560756351837793419150428842, 9.996212525013104910012155093589

Graph of the $Z$-function along the critical line