Properties

Label 2-600-1.1-c3-0-18
Degree $2$
Conductor $600$
Sign $-1$
Analytic cond. $35.4011$
Root an. cond. $5.94988$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 8·7-s + 9·9-s + 20·11-s − 22·13-s + 14·17-s + 76·19-s + 24·21-s − 56·23-s − 27·27-s − 154·29-s + 160·31-s − 60·33-s + 162·37-s + 66·39-s − 390·41-s − 388·43-s + 544·47-s − 279·49-s − 42·51-s + 210·53-s − 228·57-s − 380·59-s − 794·61-s − 72·63-s + 148·67-s + 168·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.431·7-s + 1/3·9-s + 0.548·11-s − 0.469·13-s + 0.199·17-s + 0.917·19-s + 0.249·21-s − 0.507·23-s − 0.192·27-s − 0.986·29-s + 0.926·31-s − 0.316·33-s + 0.719·37-s + 0.270·39-s − 1.48·41-s − 1.37·43-s + 1.68·47-s − 0.813·49-s − 0.115·51-s + 0.544·53-s − 0.529·57-s − 0.838·59-s − 1.66·61-s − 0.143·63-s + 0.269·67-s + 0.293·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(35.4011\)
Root analytic conductor: \(5.94988\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 600,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 \)
good7 \( 1 + 8 T + p^{3} T^{2} \)
11 \( 1 - 20 T + p^{3} T^{2} \)
13 \( 1 + 22 T + p^{3} T^{2} \)
17 \( 1 - 14 T + p^{3} T^{2} \)
19 \( 1 - 4 p T + p^{3} T^{2} \)
23 \( 1 + 56 T + p^{3} T^{2} \)
29 \( 1 + 154 T + p^{3} T^{2} \)
31 \( 1 - 160 T + p^{3} T^{2} \)
37 \( 1 - 162 T + p^{3} T^{2} \)
41 \( 1 + 390 T + p^{3} T^{2} \)
43 \( 1 + 388 T + p^{3} T^{2} \)
47 \( 1 - 544 T + p^{3} T^{2} \)
53 \( 1 - 210 T + p^{3} T^{2} \)
59 \( 1 + 380 T + p^{3} T^{2} \)
61 \( 1 + 794 T + p^{3} T^{2} \)
67 \( 1 - 148 T + p^{3} T^{2} \)
71 \( 1 + 840 T + p^{3} T^{2} \)
73 \( 1 + 858 T + p^{3} T^{2} \)
79 \( 1 - 144 T + p^{3} T^{2} \)
83 \( 1 + 316 T + p^{3} T^{2} \)
89 \( 1 - 1098 T + p^{3} T^{2} \)
97 \( 1 + 994 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.858195039064007808083291812846, −9.152756785828852556381630175871, −7.937480225642516303265012801209, −7.04398509773126147377112777179, −6.17434168605816562953460698531, −5.26760482819788343188426144623, −4.18261496955300194405272257579, −3.02016264350841949893002920227, −1.45650826873907689563251131852, 0, 1.45650826873907689563251131852, 3.02016264350841949893002920227, 4.18261496955300194405272257579, 5.26760482819788343188426144623, 6.17434168605816562953460698531, 7.04398509773126147377112777179, 7.937480225642516303265012801209, 9.152756785828852556381630175871, 9.858195039064007808083291812846

Graph of the $Z$-function along the critical line