L(s) = 1 | + 3·3-s + 16·7-s + 9·9-s − 28·11-s + 26·13-s + 62·17-s − 68·19-s + 48·21-s + 208·23-s + 27·27-s − 58·29-s + 160·31-s − 84·33-s − 270·37-s + 78·39-s + 282·41-s − 76·43-s + 280·47-s − 87·49-s + 186·51-s + 210·53-s − 204·57-s + 196·59-s + 742·61-s + 144·63-s − 836·67-s + 624·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.863·7-s + 1/3·9-s − 0.767·11-s + 0.554·13-s + 0.884·17-s − 0.821·19-s + 0.498·21-s + 1.88·23-s + 0.192·27-s − 0.371·29-s + 0.926·31-s − 0.443·33-s − 1.19·37-s + 0.320·39-s + 1.07·41-s − 0.269·43-s + 0.868·47-s − 0.253·49-s + 0.510·51-s + 0.544·53-s − 0.474·57-s + 0.432·59-s + 1.55·61-s + 0.287·63-s − 1.52·67-s + 1.08·69-s + ⋯ |
Λ(s)=(=(600s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(600s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.843549877 |
L(21) |
≈ |
2.843549877 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−pT |
| 5 | 1 |
good | 7 | 1−16T+p3T2 |
| 11 | 1+28T+p3T2 |
| 13 | 1−2pT+p3T2 |
| 17 | 1−62T+p3T2 |
| 19 | 1+68T+p3T2 |
| 23 | 1−208T+p3T2 |
| 29 | 1+2pT+p3T2 |
| 31 | 1−160T+p3T2 |
| 37 | 1+270T+p3T2 |
| 41 | 1−282T+p3T2 |
| 43 | 1+76T+p3T2 |
| 47 | 1−280T+p3T2 |
| 53 | 1−210T+p3T2 |
| 59 | 1−196T+p3T2 |
| 61 | 1−742T+p3T2 |
| 67 | 1+836T+p3T2 |
| 71 | 1+504T+p3T2 |
| 73 | 1−1062T+p3T2 |
| 79 | 1−768T+p3T2 |
| 83 | 1−1052T+p3T2 |
| 89 | 1+726T+p3T2 |
| 97 | 1−1406T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.40315258013460502497575714427, −9.231469528224753965378959459148, −8.449190075546532196723925377173, −7.77635714893283745088183976587, −6.83701489903676173234531684575, −5.53609398247293713209504942330, −4.67871952250030086479151753184, −3.47048686458413917204240061837, −2.34248148855115171478782764637, −1.04256043740078889423438437899,
1.04256043740078889423438437899, 2.34248148855115171478782764637, 3.47048686458413917204240061837, 4.67871952250030086479151753184, 5.53609398247293713209504942330, 6.83701489903676173234531684575, 7.77635714893283745088183976587, 8.449190075546532196723925377173, 9.231469528224753965378959459148, 10.40315258013460502497575714427