Properties

Label 2-600-1.1-c3-0-13
Degree $2$
Conductor $600$
Sign $1$
Analytic cond. $35.4011$
Root an. cond. $5.94988$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 16·7-s + 9·9-s − 28·11-s + 26·13-s + 62·17-s − 68·19-s + 48·21-s + 208·23-s + 27·27-s − 58·29-s + 160·31-s − 84·33-s − 270·37-s + 78·39-s + 282·41-s − 76·43-s + 280·47-s − 87·49-s + 186·51-s + 210·53-s − 204·57-s + 196·59-s + 742·61-s + 144·63-s − 836·67-s + 624·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.863·7-s + 1/3·9-s − 0.767·11-s + 0.554·13-s + 0.884·17-s − 0.821·19-s + 0.498·21-s + 1.88·23-s + 0.192·27-s − 0.371·29-s + 0.926·31-s − 0.443·33-s − 1.19·37-s + 0.320·39-s + 1.07·41-s − 0.269·43-s + 0.868·47-s − 0.253·49-s + 0.510·51-s + 0.544·53-s − 0.474·57-s + 0.432·59-s + 1.55·61-s + 0.287·63-s − 1.52·67-s + 1.08·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(35.4011\)
Root analytic conductor: \(5.94988\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 600,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.843549877\)
\(L(\frac12)\) \(\approx\) \(2.843549877\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 \)
good7 \( 1 - 16 T + p^{3} T^{2} \)
11 \( 1 + 28 T + p^{3} T^{2} \)
13 \( 1 - 2 p T + p^{3} T^{2} \)
17 \( 1 - 62 T + p^{3} T^{2} \)
19 \( 1 + 68 T + p^{3} T^{2} \)
23 \( 1 - 208 T + p^{3} T^{2} \)
29 \( 1 + 2 p T + p^{3} T^{2} \)
31 \( 1 - 160 T + p^{3} T^{2} \)
37 \( 1 + 270 T + p^{3} T^{2} \)
41 \( 1 - 282 T + p^{3} T^{2} \)
43 \( 1 + 76 T + p^{3} T^{2} \)
47 \( 1 - 280 T + p^{3} T^{2} \)
53 \( 1 - 210 T + p^{3} T^{2} \)
59 \( 1 - 196 T + p^{3} T^{2} \)
61 \( 1 - 742 T + p^{3} T^{2} \)
67 \( 1 + 836 T + p^{3} T^{2} \)
71 \( 1 + 504 T + p^{3} T^{2} \)
73 \( 1 - 1062 T + p^{3} T^{2} \)
79 \( 1 - 768 T + p^{3} T^{2} \)
83 \( 1 - 1052 T + p^{3} T^{2} \)
89 \( 1 + 726 T + p^{3} T^{2} \)
97 \( 1 - 1406 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.40315258013460502497575714427, −9.231469528224753965378959459148, −8.449190075546532196723925377173, −7.77635714893283745088183976587, −6.83701489903676173234531684575, −5.53609398247293713209504942330, −4.67871952250030086479151753184, −3.47048686458413917204240061837, −2.34248148855115171478782764637, −1.04256043740078889423438437899, 1.04256043740078889423438437899, 2.34248148855115171478782764637, 3.47048686458413917204240061837, 4.67871952250030086479151753184, 5.53609398247293713209504942330, 6.83701489903676173234531684575, 7.77635714893283745088183976587, 8.449190075546532196723925377173, 9.231469528224753965378959459148, 10.40315258013460502497575714427

Graph of the $Z$-function along the critical line