L(s) = 1 | + 3·3-s − 4·7-s + 9·9-s + 72·11-s + 6·13-s − 38·17-s + 52·19-s − 12·21-s − 152·23-s + 27·27-s − 78·29-s + 120·31-s + 216·33-s + 150·37-s + 18·39-s + 362·41-s + 484·43-s − 280·47-s − 327·49-s − 114·51-s + 670·53-s + 156·57-s + 696·59-s + 222·61-s − 36·63-s + 4·67-s − 456·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.215·7-s + 1/3·9-s + 1.97·11-s + 0.128·13-s − 0.542·17-s + 0.627·19-s − 0.124·21-s − 1.37·23-s + 0.192·27-s − 0.499·29-s + 0.695·31-s + 1.13·33-s + 0.666·37-s + 0.0739·39-s + 1.37·41-s + 1.71·43-s − 0.868·47-s − 0.953·49-s − 0.313·51-s + 1.73·53-s + 0.362·57-s + 1.53·59-s + 0.465·61-s − 0.0719·63-s + 0.00729·67-s − 0.795·69-s + ⋯ |
Λ(s)=(=(600s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(600s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.753943996 |
L(21) |
≈ |
2.753943996 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−pT |
| 5 | 1 |
good | 7 | 1+4T+p3T2 |
| 11 | 1−72T+p3T2 |
| 13 | 1−6T+p3T2 |
| 17 | 1+38T+p3T2 |
| 19 | 1−52T+p3T2 |
| 23 | 1+152T+p3T2 |
| 29 | 1+78T+p3T2 |
| 31 | 1−120T+p3T2 |
| 37 | 1−150T+p3T2 |
| 41 | 1−362T+p3T2 |
| 43 | 1−484T+p3T2 |
| 47 | 1+280T+p3T2 |
| 53 | 1−670T+p3T2 |
| 59 | 1−696T+p3T2 |
| 61 | 1−222T+p3T2 |
| 67 | 1−4T+p3T2 |
| 71 | 1−96T+p3T2 |
| 73 | 1+178T+p3T2 |
| 79 | 1+8pT+p3T2 |
| 83 | 1−612T+p3T2 |
| 89 | 1−994T+p3T2 |
| 97 | 1+1634T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.993368208456742317363106162000, −9.361478696657337687004098864273, −8.652121092913989539432789289794, −7.62675244322544171124379873874, −6.67060950131857582569174570047, −5.88546809392649643222817445964, −4.31275554917054267971754068209, −3.69361082279938996315911108041, −2.30518914621037063047300541490, −1.02510836334262455767194778898,
1.02510836334262455767194778898, 2.30518914621037063047300541490, 3.69361082279938996315911108041, 4.31275554917054267971754068209, 5.88546809392649643222817445964, 6.67060950131857582569174570047, 7.62675244322544171124379873874, 8.652121092913989539432789289794, 9.361478696657337687004098864273, 9.993368208456742317363106162000