L(s) = 1 | + 3·3-s − 4·7-s + 9·9-s + 72·11-s + 6·13-s − 38·17-s + 52·19-s − 12·21-s − 152·23-s + 27·27-s − 78·29-s + 120·31-s + 216·33-s + 150·37-s + 18·39-s + 362·41-s + 484·43-s − 280·47-s − 327·49-s − 114·51-s + 670·53-s + 156·57-s + 696·59-s + 222·61-s − 36·63-s + 4·67-s − 456·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.215·7-s + 1/3·9-s + 1.97·11-s + 0.128·13-s − 0.542·17-s + 0.627·19-s − 0.124·21-s − 1.37·23-s + 0.192·27-s − 0.499·29-s + 0.695·31-s + 1.13·33-s + 0.666·37-s + 0.0739·39-s + 1.37·41-s + 1.71·43-s − 0.868·47-s − 0.953·49-s − 0.313·51-s + 1.73·53-s + 0.362·57-s + 1.53·59-s + 0.465·61-s − 0.0719·63-s + 0.00729·67-s − 0.795·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.753943996\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.753943996\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - p T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 4 T + p^{3} T^{2} \) |
| 11 | \( 1 - 72 T + p^{3} T^{2} \) |
| 13 | \( 1 - 6 T + p^{3} T^{2} \) |
| 17 | \( 1 + 38 T + p^{3} T^{2} \) |
| 19 | \( 1 - 52 T + p^{3} T^{2} \) |
| 23 | \( 1 + 152 T + p^{3} T^{2} \) |
| 29 | \( 1 + 78 T + p^{3} T^{2} \) |
| 31 | \( 1 - 120 T + p^{3} T^{2} \) |
| 37 | \( 1 - 150 T + p^{3} T^{2} \) |
| 41 | \( 1 - 362 T + p^{3} T^{2} \) |
| 43 | \( 1 - 484 T + p^{3} T^{2} \) |
| 47 | \( 1 + 280 T + p^{3} T^{2} \) |
| 53 | \( 1 - 670 T + p^{3} T^{2} \) |
| 59 | \( 1 - 696 T + p^{3} T^{2} \) |
| 61 | \( 1 - 222 T + p^{3} T^{2} \) |
| 67 | \( 1 - 4 T + p^{3} T^{2} \) |
| 71 | \( 1 - 96 T + p^{3} T^{2} \) |
| 73 | \( 1 + 178 T + p^{3} T^{2} \) |
| 79 | \( 1 + 8 p T + p^{3} T^{2} \) |
| 83 | \( 1 - 612 T + p^{3} T^{2} \) |
| 89 | \( 1 - 994 T + p^{3} T^{2} \) |
| 97 | \( 1 + 1634 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.993368208456742317363106162000, −9.361478696657337687004098864273, −8.652121092913989539432789289794, −7.62675244322544171124379873874, −6.67060950131857582569174570047, −5.88546809392649643222817445964, −4.31275554917054267971754068209, −3.69361082279938996315911108041, −2.30518914621037063047300541490, −1.02510836334262455767194778898,
1.02510836334262455767194778898, 2.30518914621037063047300541490, 3.69361082279938996315911108041, 4.31275554917054267971754068209, 5.88546809392649643222817445964, 6.67060950131857582569174570047, 7.62675244322544171124379873874, 8.652121092913989539432789289794, 9.361478696657337687004098864273, 9.993368208456742317363106162000