Properties

Label 2-5e2-25.8-c2-0-0
Degree $2$
Conductor $25$
Sign $0.860 + 0.510i$
Analytic cond. $0.681200$
Root an. cond. $0.825348$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.61 − 0.824i)2-s + (3.42 + 0.541i)3-s + (−0.411 − 0.567i)4-s + (4.00 − 2.99i)5-s + (−5.08 − 3.69i)6-s + (−8.06 + 8.06i)7-s + (1.33 + 8.43i)8-s + (2.84 + 0.924i)9-s + (−8.94 + 1.55i)10-s + (−1.43 − 4.43i)11-s + (−1.10 − 2.16i)12-s + (−7.37 + 3.75i)13-s + (19.6 − 6.40i)14-s + (15.3 − 8.09i)15-s + (3.92 − 12.0i)16-s + (16.4 − 2.60i)17-s + ⋯
L(s)  = 1  + (−0.809 − 0.412i)2-s + (1.14 + 0.180i)3-s + (−0.102 − 0.141i)4-s + (0.800 − 0.599i)5-s + (−0.848 − 0.616i)6-s + (−1.15 + 1.15i)7-s + (0.166 + 1.05i)8-s + (0.316 + 0.102i)9-s + (−0.894 + 0.155i)10-s + (−0.130 − 0.402i)11-s + (−0.0918 − 0.180i)12-s + (−0.567 + 0.289i)13-s + (1.40 − 0.457i)14-s + (1.02 − 0.539i)15-s + (0.245 − 0.755i)16-s + (0.969 − 0.153i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.860 + 0.510i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.860 + 0.510i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25\)    =    \(5^{2}\)
Sign: $0.860 + 0.510i$
Analytic conductor: \(0.681200\)
Root analytic conductor: \(0.825348\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{25} (8, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 25,\ (\ :1),\ 0.860 + 0.510i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.792310 - 0.217368i\)
\(L(\frac12)\) \(\approx\) \(0.792310 - 0.217368i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-4.00 + 2.99i)T \)
good2 \( 1 + (1.61 + 0.824i)T + (2.35 + 3.23i)T^{2} \)
3 \( 1 + (-3.42 - 0.541i)T + (8.55 + 2.78i)T^{2} \)
7 \( 1 + (8.06 - 8.06i)T - 49iT^{2} \)
11 \( 1 + (1.43 + 4.43i)T + (-97.8 + 71.1i)T^{2} \)
13 \( 1 + (7.37 - 3.75i)T + (99.3 - 136. i)T^{2} \)
17 \( 1 + (-16.4 + 2.60i)T + (274. - 89.3i)T^{2} \)
19 \( 1 + (2.60 - 3.58i)T + (-111. - 343. i)T^{2} \)
23 \( 1 + (-1.57 + 3.09i)T + (-310. - 427. i)T^{2} \)
29 \( 1 + (14.6 + 20.1i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (-39.2 - 28.5i)T + (296. + 913. i)T^{2} \)
37 \( 1 + (12.2 + 23.9i)T + (-804. + 1.10e3i)T^{2} \)
41 \( 1 + (-10.7 + 33.1i)T + (-1.35e3 - 988. i)T^{2} \)
43 \( 1 + (13.5 + 13.5i)T + 1.84e3iT^{2} \)
47 \( 1 + (8.94 - 56.4i)T + (-2.10e3 - 682. i)T^{2} \)
53 \( 1 + (15.9 + 2.51i)T + (2.67e3 + 868. i)T^{2} \)
59 \( 1 + (-50.4 - 16.3i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (-25.1 - 77.4i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + (-3.74 + 0.593i)T + (4.26e3 - 1.38e3i)T^{2} \)
71 \( 1 + (23.0 - 16.7i)T + (1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (19.4 - 38.1i)T + (-3.13e3 - 4.31e3i)T^{2} \)
79 \( 1 + (-46.6 - 64.1i)T + (-1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (9.69 + 61.2i)T + (-6.55e3 + 2.12e3i)T^{2} \)
89 \( 1 + (-91.0 + 29.5i)T + (6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (22.8 - 143. i)T + (-8.94e3 - 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.49311957262872273209229326111, −16.14836795914171243805525822764, −14.67688116524244547093657282395, −13.63873119851696489319735280285, −12.20516414258424704035324887137, −9.990155897891212833059232893121, −9.286706498448610616554362517031, −8.442083970512024467102230264263, −5.68204057349567982472666962103, −2.57830703713719552368026270411, 3.29210839300940802357526598564, 6.80320545103478328259686716882, 7.87364214351724092424156833705, 9.525895034682326337327757608254, 10.14523961610872954741333077986, 12.95325226725529601508001966996, 13.71082521248575502763307964358, 14.97689412742107120524043449758, 16.59688372500257068806328229742, 17.41440179037054602484524314335

Graph of the $Z$-function along the critical line