Properties

Label 2-5e2-25.19-c1-0-1
Degree $2$
Conductor $25$
Sign $0.988 + 0.154i$
Analytic cond. $0.199626$
Root an. cond. $0.446795$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.174 − 0.0566i)2-s + (−0.865 − 1.19i)3-s + (−1.59 + 1.15i)4-s + (0.107 + 2.23i)5-s + (−0.218 − 0.158i)6-s − 3.26i·7-s + (−0.427 + 0.587i)8-s + (0.257 − 0.792i)9-s + (0.145 + 0.382i)10-s + (0.618 + 1.90i)11-s + (2.75 + 0.894i)12-s + (0.281 + 0.0915i)13-s + (−0.184 − 0.568i)14-s + (2.56 − 2.06i)15-s + (1.17 − 3.61i)16-s + (−3.03 + 4.17i)17-s + ⋯
L(s)  = 1  + (0.123 − 0.0400i)2-s + (−0.499 − 0.687i)3-s + (−0.795 + 0.577i)4-s + (0.0481 + 0.998i)5-s + (−0.0890 − 0.0646i)6-s − 1.23i·7-s + (−0.150 + 0.207i)8-s + (0.0858 − 0.264i)9-s + (0.0459 + 0.121i)10-s + (0.186 + 0.573i)11-s + (0.794 + 0.258i)12-s + (0.0781 + 0.0254i)13-s + (−0.0493 − 0.151i)14-s + (0.662 − 0.532i)15-s + (0.293 − 0.903i)16-s + (−0.736 + 1.01i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 + 0.154i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 + 0.154i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25\)    =    \(5^{2}\)
Sign: $0.988 + 0.154i$
Analytic conductor: \(0.199626\)
Root analytic conductor: \(0.446795\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{25} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 25,\ (\ :1/2),\ 0.988 + 0.154i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.562824 - 0.0437038i\)
\(L(\frac12)\) \(\approx\) \(0.562824 - 0.0437038i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.107 - 2.23i)T \)
good2 \( 1 + (-0.174 + 0.0566i)T + (1.61 - 1.17i)T^{2} \)
3 \( 1 + (0.865 + 1.19i)T + (-0.927 + 2.85i)T^{2} \)
7 \( 1 + 3.26iT - 7T^{2} \)
11 \( 1 + (-0.618 - 1.90i)T + (-8.89 + 6.46i)T^{2} \)
13 \( 1 + (-0.281 - 0.0915i)T + (10.5 + 7.64i)T^{2} \)
17 \( 1 + (3.03 - 4.17i)T + (-5.25 - 16.1i)T^{2} \)
19 \( 1 + (-1.39 - 1.01i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (-0.836 + 0.271i)T + (18.6 - 13.5i)T^{2} \)
29 \( 1 + (-4.78 + 3.47i)T + (8.96 - 27.5i)T^{2} \)
31 \( 1 + (4.93 + 3.58i)T + (9.57 + 29.4i)T^{2} \)
37 \( 1 + (-7.69 - 2.49i)T + (29.9 + 21.7i)T^{2} \)
41 \( 1 + (0.313 - 0.965i)T + (-33.1 - 24.0i)T^{2} \)
43 \( 1 - 3.24iT - 43T^{2} \)
47 \( 1 + (2.48 + 3.41i)T + (-14.5 + 44.6i)T^{2} \)
53 \( 1 + (4.76 + 6.55i)T + (-16.3 + 50.4i)T^{2} \)
59 \( 1 + (1.83 - 5.64i)T + (-47.7 - 34.6i)T^{2} \)
61 \( 1 + (-0.282 - 0.870i)T + (-49.3 + 35.8i)T^{2} \)
67 \( 1 + (-4.04 + 5.57i)T + (-20.7 - 63.7i)T^{2} \)
71 \( 1 + (-4.82 + 3.50i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (-8.40 + 2.72i)T + (59.0 - 42.9i)T^{2} \)
79 \( 1 + (6.27 - 4.56i)T + (24.4 - 75.1i)T^{2} \)
83 \( 1 + (8.53 - 11.7i)T + (-25.6 - 78.9i)T^{2} \)
89 \( 1 + (2.32 + 7.15i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (-3.95 - 5.44i)T + (-29.9 + 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.70689602446413078878136299026, −16.93512229164178351082287067984, −14.92209439186877527469628575281, −13.69771012869302333356941173357, −12.73343442862007151362665344453, −11.31860272458010161865049727694, −9.836968353273208360514217343044, −7.73124663888318285965963720408, −6.54132635344714138363853998282, −3.98048819631383695223672152000, 4.73810456658168035860164939240, 5.66095007107135267912137327348, 8.701519957482883251445840148556, 9.556770051471529748751485762072, 11.22534612529670529243682962904, 12.69012674657279720579725209532, 13.94842229025436135185879828806, 15.52005546067142803602368437222, 16.27329286463341476755679851937, 17.70115003696419420009100125619

Graph of the $Z$-function along the critical line