Properties

Label 2-5e2-25.14-c7-0-14
Degree $2$
Conductor $25$
Sign $-0.736 - 0.676i$
Analytic cond. $7.80962$
Root an. cond. $2.79457$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−7.81 − 10.7i)2-s + (37.7 + 12.2i)3-s + (−15.0 + 46.4i)4-s + (−244. + 135. i)5-s + (−163. − 501. i)6-s − 876. i·7-s + (−1.00e3 + 325. i)8-s + (−495. − 359. i)9-s + (3.37e3 + 1.56e3i)10-s + (−1.88e3 + 1.36e3i)11-s + (−1.13e3 + 1.56e3i)12-s + (−7.81e3 + 1.07e4i)13-s + (−9.42e3 + 6.84e3i)14-s + (−1.08e4 + 2.13e3i)15-s + (1.63e4 + 1.19e4i)16-s + (583. − 189. i)17-s + ⋯
L(s)  = 1  + (−0.690 − 0.950i)2-s + (0.807 + 0.262i)3-s + (−0.117 + 0.362i)4-s + (−0.873 + 0.486i)5-s + (−0.308 − 0.948i)6-s − 0.965i·7-s + (−0.691 + 0.224i)8-s + (−0.226 − 0.164i)9-s + (1.06 + 0.494i)10-s + (−0.426 + 0.309i)11-s + (−0.190 + 0.261i)12-s + (−0.986 + 1.35i)13-s + (−0.918 + 0.667i)14-s + (−0.832 + 0.163i)15-s + (0.999 + 0.726i)16-s + (0.0288 − 0.00936i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.736 - 0.676i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.736 - 0.676i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25\)    =    \(5^{2}\)
Sign: $-0.736 - 0.676i$
Analytic conductor: \(7.80962\)
Root analytic conductor: \(2.79457\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{25} (14, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 25,\ (\ :7/2),\ -0.736 - 0.676i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.0683967 + 0.175413i\)
\(L(\frac12)\) \(\approx\) \(0.0683967 + 0.175413i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (244. - 135. i)T \)
good2 \( 1 + (7.81 + 10.7i)T + (-39.5 + 121. i)T^{2} \)
3 \( 1 + (-37.7 - 12.2i)T + (1.76e3 + 1.28e3i)T^{2} \)
7 \( 1 + 876. iT - 8.23e5T^{2} \)
11 \( 1 + (1.88e3 - 1.36e3i)T + (6.02e6 - 1.85e7i)T^{2} \)
13 \( 1 + (7.81e3 - 1.07e4i)T + (-1.93e7 - 5.96e7i)T^{2} \)
17 \( 1 + (-583. + 189. i)T + (3.31e8 - 2.41e8i)T^{2} \)
19 \( 1 + (4.03e3 + 1.24e4i)T + (-7.23e8 + 5.25e8i)T^{2} \)
23 \( 1 + (4.43e4 + 6.10e4i)T + (-1.05e9 + 3.23e9i)T^{2} \)
29 \( 1 + (6.14e4 - 1.89e5i)T + (-1.39e10 - 1.01e10i)T^{2} \)
31 \( 1 + (9.72e3 + 2.99e4i)T + (-2.22e10 + 1.61e10i)T^{2} \)
37 \( 1 + (-2.21e5 + 3.04e5i)T + (-2.93e10 - 9.02e10i)T^{2} \)
41 \( 1 + (-1.06e5 - 7.72e4i)T + (6.01e10 + 1.85e11i)T^{2} \)
43 \( 1 + 8.90e5iT - 2.71e11T^{2} \)
47 \( 1 + (8.08e5 + 2.62e5i)T + (4.09e11 + 2.97e11i)T^{2} \)
53 \( 1 + (-8.16e5 - 2.65e5i)T + (9.50e11 + 6.90e11i)T^{2} \)
59 \( 1 + (-4.25e5 - 3.09e5i)T + (7.69e11 + 2.36e12i)T^{2} \)
61 \( 1 + (8.62e4 - 6.26e4i)T + (9.71e11 - 2.98e12i)T^{2} \)
67 \( 1 + (1.75e6 - 5.69e5i)T + (4.90e12 - 3.56e12i)T^{2} \)
71 \( 1 + (8.23e5 - 2.53e6i)T + (-7.35e12 - 5.34e12i)T^{2} \)
73 \( 1 + (-1.45e6 - 2.00e6i)T + (-3.41e12 + 1.05e13i)T^{2} \)
79 \( 1 + (-7.68e5 + 2.36e6i)T + (-1.55e13 - 1.12e13i)T^{2} \)
83 \( 1 + (1.12e6 - 3.64e5i)T + (2.19e13 - 1.59e13i)T^{2} \)
89 \( 1 + (8.43e6 - 6.13e6i)T + (1.36e13 - 4.20e13i)T^{2} \)
97 \( 1 + (1.09e7 + 3.55e6i)T + (6.53e13 + 4.74e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.97427060193567974129290598870, −14.21577549304998514460640305612, −12.22559985502951848190528611132, −11.05388464915707623362954044963, −9.935883003564508716461262005386, −8.675096961127436105288888601076, −7.14379150138648945535139803504, −3.99667410564287749083790509806, −2.44846501333908046719977938750, −0.10354025722071914133299739480, 2.94963200132776992690694977060, 5.61495865904723084611332258841, 7.85927259338384468422441568865, 8.100931148206402498026131082934, 9.502187222989669116855803623791, 11.79956200922542598612144807872, 12.99556274682502163028374838544, 14.87613943404700532355559524665, 15.47890914555145489918004288943, 16.63706480052599024269531488123

Graph of the $Z$-function along the critical line