Properties

Label 2-5950-1.1-c1-0-135
Degree $2$
Conductor $5950$
Sign $-1$
Analytic cond. $47.5109$
Root an. cond. $6.89282$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.37·3-s + 4-s − 2.37·6-s − 7-s − 8-s + 2.65·9-s + 1.02·11-s + 2.37·12-s + 1.72·13-s + 14-s + 16-s − 17-s − 2.65·18-s − 7.22·19-s − 2.37·21-s − 1.02·22-s − 5.13·23-s − 2.37·24-s − 1.72·26-s − 0.829·27-s − 28-s + 5.40·29-s − 7.47·31-s − 32-s + 2.44·33-s + 34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.37·3-s + 0.5·4-s − 0.970·6-s − 0.377·7-s − 0.353·8-s + 0.883·9-s + 0.310·11-s + 0.686·12-s + 0.478·13-s + 0.267·14-s + 0.250·16-s − 0.242·17-s − 0.624·18-s − 1.65·19-s − 0.518·21-s − 0.219·22-s − 1.07·23-s − 0.485·24-s − 0.338·26-s − 0.159·27-s − 0.188·28-s + 1.00·29-s − 1.34·31-s − 0.176·32-s + 0.425·33-s + 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5950\)    =    \(2 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(47.5109\)
Root analytic conductor: \(6.89282\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 - 2.37T + 3T^{2} \)
11 \( 1 - 1.02T + 11T^{2} \)
13 \( 1 - 1.72T + 13T^{2} \)
19 \( 1 + 7.22T + 19T^{2} \)
23 \( 1 + 5.13T + 23T^{2} \)
29 \( 1 - 5.40T + 29T^{2} \)
31 \( 1 + 7.47T + 31T^{2} \)
37 \( 1 - 8.84T + 37T^{2} \)
41 \( 1 + 6.58T + 41T^{2} \)
43 \( 1 + 0.932T + 43T^{2} \)
47 \( 1 + 4.13T + 47T^{2} \)
53 \( 1 + 6.47T + 53T^{2} \)
59 \( 1 - 8.50T + 59T^{2} \)
61 \( 1 + 14.0T + 61T^{2} \)
67 \( 1 + 0.679T + 67T^{2} \)
71 \( 1 + 14.6T + 71T^{2} \)
73 \( 1 + 7.19T + 73T^{2} \)
79 \( 1 + 2.27T + 79T^{2} \)
83 \( 1 - 15.8T + 83T^{2} \)
89 \( 1 - 17.0T + 89T^{2} \)
97 \( 1 + 13.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.096484188642323822944193526913, −7.22838326373966906439697263110, −6.44025138610987950537552852693, −5.93754649242718136109872602163, −4.54798521107767314863271886181, −3.83261430818539476534190782906, −3.08514806289706101380564092136, −2.26172032649799732627107586453, −1.56942841437104968716130794372, 0, 1.56942841437104968716130794372, 2.26172032649799732627107586453, 3.08514806289706101380564092136, 3.83261430818539476534190782906, 4.54798521107767314863271886181, 5.93754649242718136109872602163, 6.44025138610987950537552852693, 7.22838326373966906439697263110, 8.096484188642323822944193526913

Graph of the $Z$-function along the critical line