Properties

Label 2-5950-1.1-c1-0-133
Degree $2$
Conductor $5950$
Sign $-1$
Analytic cond. $47.5109$
Root an. cond. $6.89282$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 0.347·3-s + 4-s + 0.347·6-s − 7-s + 8-s − 2.87·9-s + 0.532·11-s + 0.347·12-s − 1.22·13-s − 14-s + 16-s − 17-s − 2.87·18-s + 5.47·19-s − 0.347·21-s + 0.532·22-s + 4.10·23-s + 0.347·24-s − 1.22·26-s − 2.04·27-s − 28-s − 9.70·29-s − 5.78·31-s + 32-s + 0.184·33-s − 34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.200·3-s + 0.5·4-s + 0.141·6-s − 0.377·7-s + 0.353·8-s − 0.959·9-s + 0.160·11-s + 0.100·12-s − 0.340·13-s − 0.267·14-s + 0.250·16-s − 0.242·17-s − 0.678·18-s + 1.25·19-s − 0.0757·21-s + 0.113·22-s + 0.856·23-s + 0.0708·24-s − 0.240·26-s − 0.392·27-s − 0.188·28-s − 1.80·29-s − 1.03·31-s + 0.176·32-s + 0.0321·33-s − 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5950\)    =    \(2 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(47.5109\)
Root analytic conductor: \(6.89282\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 - 0.347T + 3T^{2} \)
11 \( 1 - 0.532T + 11T^{2} \)
13 \( 1 + 1.22T + 13T^{2} \)
19 \( 1 - 5.47T + 19T^{2} \)
23 \( 1 - 4.10T + 23T^{2} \)
29 \( 1 + 9.70T + 29T^{2} \)
31 \( 1 + 5.78T + 31T^{2} \)
37 \( 1 + 10.5T + 37T^{2} \)
41 \( 1 + 1.89T + 41T^{2} \)
43 \( 1 - 1.90T + 43T^{2} \)
47 \( 1 + 1.34T + 47T^{2} \)
53 \( 1 - 0.652T + 53T^{2} \)
59 \( 1 + 0.509T + 59T^{2} \)
61 \( 1 + 9.04T + 61T^{2} \)
67 \( 1 - 7.92T + 67T^{2} \)
71 \( 1 + 0.361T + 71T^{2} \)
73 \( 1 + 7.61T + 73T^{2} \)
79 \( 1 - 4.29T + 79T^{2} \)
83 \( 1 - 5.32T + 83T^{2} \)
89 \( 1 + 4.04T + 89T^{2} \)
97 \( 1 + 9.06T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47889440014570384352141110427, −7.09792825591559306376584133891, −6.19098252513052596281360266702, −5.41098218999954821767448800019, −5.08271107262260990683912738561, −3.82866631443380196921255398255, −3.34122411823723706438154912050, −2.56150591513611287448079457468, −1.55813045773453920095586631881, 0, 1.55813045773453920095586631881, 2.56150591513611287448079457468, 3.34122411823723706438154912050, 3.82866631443380196921255398255, 5.08271107262260990683912738561, 5.41098218999954821767448800019, 6.19098252513052596281360266702, 7.09792825591559306376584133891, 7.47889440014570384352141110427

Graph of the $Z$-function along the critical line