Properties

Label 2-5950-1.1-c1-0-120
Degree $2$
Conductor $5950$
Sign $-1$
Analytic cond. $47.5109$
Root an. cond. $6.89282$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3.23·3-s + 4-s − 3.23·6-s + 7-s + 8-s + 7.47·9-s + 5.23·11-s − 3.23·12-s + 2.47·13-s + 14-s + 16-s − 17-s + 7.47·18-s − 8.47·19-s − 3.23·21-s + 5.23·22-s − 8·23-s − 3.23·24-s + 2.47·26-s − 14.4·27-s + 28-s − 5.70·29-s − 1.52·31-s + 32-s − 16.9·33-s − 34-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.86·3-s + 0.5·4-s − 1.32·6-s + 0.377·7-s + 0.353·8-s + 2.49·9-s + 1.57·11-s − 0.934·12-s + 0.685·13-s + 0.267·14-s + 0.250·16-s − 0.242·17-s + 1.76·18-s − 1.94·19-s − 0.706·21-s + 1.11·22-s − 1.66·23-s − 0.660·24-s + 0.484·26-s − 2.78·27-s + 0.188·28-s − 1.05·29-s − 0.274·31-s + 0.176·32-s − 2.94·33-s − 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5950\)    =    \(2 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(47.5109\)
Root analytic conductor: \(6.89282\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 + 3.23T + 3T^{2} \)
11 \( 1 - 5.23T + 11T^{2} \)
13 \( 1 - 2.47T + 13T^{2} \)
19 \( 1 + 8.47T + 19T^{2} \)
23 \( 1 + 8T + 23T^{2} \)
29 \( 1 + 5.70T + 29T^{2} \)
31 \( 1 + 1.52T + 31T^{2} \)
37 \( 1 - 3.23T + 37T^{2} \)
41 \( 1 + 3.52T + 41T^{2} \)
43 \( 1 + 2.47T + 43T^{2} \)
47 \( 1 - 2.47T + 47T^{2} \)
53 \( 1 - 4.47T + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 - 1.23T + 61T^{2} \)
67 \( 1 - 1.52T + 67T^{2} \)
71 \( 1 + 2.47T + 71T^{2} \)
73 \( 1 + 13.4T + 73T^{2} \)
79 \( 1 + 10.4T + 79T^{2} \)
83 \( 1 + 2T + 83T^{2} \)
89 \( 1 - 2T + 89T^{2} \)
97 \( 1 - 8.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.33494719551770040165350950377, −6.67725483973559868612194058936, −6.04019892997750444157409167749, −5.89350982574938464282746485527, −4.80294342093957061906822588346, −4.12232741272564039087198748468, −3.85964005600496296816654739047, −2.00346828783341979017689215199, −1.36826581247304434124664115743, 0, 1.36826581247304434124664115743, 2.00346828783341979017689215199, 3.85964005600496296816654739047, 4.12232741272564039087198748468, 4.80294342093957061906822588346, 5.89350982574938464282746485527, 6.04019892997750444157409167749, 6.67725483973559868612194058936, 7.33494719551770040165350950377

Graph of the $Z$-function along the critical line