Properties

Label 2-5950-1.1-c1-0-117
Degree $2$
Conductor $5950$
Sign $-1$
Analytic cond. $47.5109$
Root an. cond. $6.89282$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 1.27·3-s + 4-s − 1.27·6-s + 7-s + 8-s − 1.37·9-s − 4.10·11-s − 1.27·12-s − 4.65·13-s + 14-s + 16-s + 17-s − 1.37·18-s + 7.78·19-s − 1.27·21-s − 4.10·22-s + 1.82·23-s − 1.27·24-s − 4.65·26-s + 5.57·27-s + 28-s − 0.829·29-s + 5.33·31-s + 32-s + 5.22·33-s + 34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.735·3-s + 0.5·4-s − 0.520·6-s + 0.377·7-s + 0.353·8-s − 0.459·9-s − 1.23·11-s − 0.367·12-s − 1.28·13-s + 0.267·14-s + 0.250·16-s + 0.242·17-s − 0.324·18-s + 1.78·19-s − 0.277·21-s − 0.874·22-s + 0.379·23-s − 0.260·24-s − 0.912·26-s + 1.07·27-s + 0.188·28-s − 0.154·29-s + 0.957·31-s + 0.176·32-s + 0.909·33-s + 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5950\)    =    \(2 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(47.5109\)
Root analytic conductor: \(6.89282\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good3 \( 1 + 1.27T + 3T^{2} \)
11 \( 1 + 4.10T + 11T^{2} \)
13 \( 1 + 4.65T + 13T^{2} \)
19 \( 1 - 7.78T + 19T^{2} \)
23 \( 1 - 1.82T + 23T^{2} \)
29 \( 1 + 0.829T + 29T^{2} \)
31 \( 1 - 5.33T + 31T^{2} \)
37 \( 1 - 5.05T + 37T^{2} \)
41 \( 1 + 9.12T + 41T^{2} \)
43 \( 1 - 7.50T + 43T^{2} \)
47 \( 1 - 0.821T + 47T^{2} \)
53 \( 1 + 6.33T + 53T^{2} \)
59 \( 1 + 9.43T + 59T^{2} \)
61 \( 1 - 1.30T + 61T^{2} \)
67 \( 1 + 8.48T + 67T^{2} \)
71 \( 1 + 12.0T + 71T^{2} \)
73 \( 1 + 2.67T + 73T^{2} \)
79 \( 1 - 0.651T + 79T^{2} \)
83 \( 1 + 10.3T + 83T^{2} \)
89 \( 1 + 11.8T + 89T^{2} \)
97 \( 1 + 15.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61002327997399326496217852022, −7.02638924881246879546079952260, −6.05316887131844758451513826185, −5.38260042797107342811452495467, −5.06023067560789852508376491574, −4.35534608723974008666962209075, −2.91946991146009019501398217735, −2.77433843164235772823500132321, −1.32026032854132052637175305174, 0, 1.32026032854132052637175305174, 2.77433843164235772823500132321, 2.91946991146009019501398217735, 4.35534608723974008666962209075, 5.06023067560789852508376491574, 5.38260042797107342811452495467, 6.05316887131844758451513826185, 7.02638924881246879546079952260, 7.61002327997399326496217852022

Graph of the $Z$-function along the critical line