Properties

Label 2-5950-1.1-c1-0-105
Degree $2$
Conductor $5950$
Sign $-1$
Analytic cond. $47.5109$
Root an. cond. $6.89282$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 0.490·3-s + 4-s − 0.490·6-s − 7-s − 8-s − 2.75·9-s + 3.31·11-s + 0.490·12-s − 2.44·13-s + 14-s + 16-s − 17-s + 2.75·18-s + 2.77·19-s − 0.490·21-s − 3.31·22-s + 2.58·23-s − 0.490·24-s + 2.44·26-s − 2.82·27-s − 28-s + 9.02·29-s − 5.40·31-s − 32-s + 1.62·33-s + 34-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.282·3-s + 0.5·4-s − 0.200·6-s − 0.377·7-s − 0.353·8-s − 0.919·9-s + 0.998·11-s + 0.141·12-s − 0.678·13-s + 0.267·14-s + 0.250·16-s − 0.242·17-s + 0.650·18-s + 0.637·19-s − 0.106·21-s − 0.706·22-s + 0.538·23-s − 0.100·24-s + 0.479·26-s − 0.543·27-s − 0.188·28-s + 1.67·29-s − 0.970·31-s − 0.176·32-s + 0.282·33-s + 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5950\)    =    \(2 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(47.5109\)
Root analytic conductor: \(6.89282\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 - 0.490T + 3T^{2} \)
11 \( 1 - 3.31T + 11T^{2} \)
13 \( 1 + 2.44T + 13T^{2} \)
19 \( 1 - 2.77T + 19T^{2} \)
23 \( 1 - 2.58T + 23T^{2} \)
29 \( 1 - 9.02T + 29T^{2} \)
31 \( 1 + 5.40T + 31T^{2} \)
37 \( 1 + 8.62T + 37T^{2} \)
41 \( 1 + 0.332T + 41T^{2} \)
43 \( 1 + 7.56T + 43T^{2} \)
47 \( 1 + 1.47T + 47T^{2} \)
53 \( 1 - 2.40T + 53T^{2} \)
59 \( 1 - 2.13T + 59T^{2} \)
61 \( 1 - 6.05T + 61T^{2} \)
67 \( 1 + 1.66T + 67T^{2} \)
71 \( 1 - 6.40T + 71T^{2} \)
73 \( 1 - 8.09T + 73T^{2} \)
79 \( 1 + 8.49T + 79T^{2} \)
83 \( 1 - 11.4T + 83T^{2} \)
89 \( 1 + 12.4T + 89T^{2} \)
97 \( 1 + 12.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.906627606183617297685905366073, −6.81282884808766437212669574833, −6.76328826156422739602668060433, −5.62852778629864333793496030835, −4.98204825486442364240106106447, −3.79980201197211831829922014328, −3.10552209082498516932405023020, −2.32233058808145223154033822683, −1.23550145037630326934403883151, 0, 1.23550145037630326934403883151, 2.32233058808145223154033822683, 3.10552209082498516932405023020, 3.79980201197211831829922014328, 4.98204825486442364240106106447, 5.62852778629864333793496030835, 6.76328826156422739602668060433, 6.81282884808766437212669574833, 7.906627606183617297685905366073

Graph of the $Z$-function along the critical line