| L(s) = 1 | + 1.17i·2-s + 1.61i·3-s − 0.381·4-s + (−0.951 + 0.309i)5-s − 1.90·6-s − i·7-s + 0.726i·8-s − 1.61·9-s + (−0.363 − 1.11i)10-s − 0.618i·12-s + 1.17·14-s + (−0.500 − 1.53i)15-s − 1.23·16-s + i·17-s − 1.90i·18-s + ⋯ |
| L(s) = 1 | + 1.17i·2-s + 1.61i·3-s − 0.381·4-s + (−0.951 + 0.309i)5-s − 1.90·6-s − i·7-s + 0.726i·8-s − 1.61·9-s + (−0.363 − 1.11i)10-s − 0.618i·12-s + 1.17·14-s + (−0.500 − 1.53i)15-s − 1.23·16-s + i·17-s − 1.90i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.951 + 0.309i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.951 + 0.309i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7864964555\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7864964555\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (0.951 - 0.309i)T \) |
| 7 | \( 1 + iT \) |
| 17 | \( 1 - iT \) |
| good | 2 | \( 1 - 1.17iT - T^{2} \) |
| 3 | \( 1 - 1.61iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - 1.90T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - 1.17T + T^{2} \) |
| 43 | \( 1 - 1.17iT - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + 1.90iT - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 1.17T + T^{2} \) |
| 67 | \( 1 - 1.90iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 1.61iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + 0.618iT - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04656690987089467225795962732, −10.52825059081454728722480902056, −9.647266193066208986050965645542, −8.460653628252996796399924902154, −7.933416430165727194847704014602, −6.89858999818695255675364436534, −5.98596636924254430199104956556, −4.70488887014552577821441399093, −4.20880031637745118566691709463, −3.11460186069803654669947098457,
0.972231739966072897882836686047, 2.31779773827848594370283607151, 3.08777722823703857913177828321, 4.59917460442326889549399134182, 6.00364110454093106044491050771, 6.96689819180773882755835594363, 7.75025967143278718131775532657, 8.642547007087410115357288479410, 9.491927424887615724956285945503, 10.85243996514573187533867565017