| L(s) = 1 | + (1.30 − 0.541i)3-s + i·4-s + (−0.382 − 0.923i)5-s + (0.382 − 0.923i)7-s + (0.707 − 0.707i)9-s + (−0.707 − 0.292i)11-s + (0.541 + 1.30i)12-s + 1.84i·13-s + (−1 − 0.999i)15-s − 16-s + (−0.382 − 0.923i)17-s + (0.923 − 0.382i)20-s − 1.41i·21-s + (−0.707 + 0.707i)25-s + (0.923 + 0.382i)28-s + (0.707 + 1.70i)29-s + ⋯ |
| L(s) = 1 | + (1.30 − 0.541i)3-s + i·4-s + (−0.382 − 0.923i)5-s + (0.382 − 0.923i)7-s + (0.707 − 0.707i)9-s + (−0.707 − 0.292i)11-s + (0.541 + 1.30i)12-s + 1.84i·13-s + (−1 − 0.999i)15-s − 16-s + (−0.382 − 0.923i)17-s + (0.923 − 0.382i)20-s − 1.41i·21-s + (−0.707 + 0.707i)25-s + (0.923 + 0.382i)28-s + (0.707 + 1.70i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.905 + 0.425i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.905 + 0.425i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.249394482\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.249394482\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (0.382 + 0.923i)T \) |
| 7 | \( 1 + (-0.382 + 0.923i)T \) |
| 17 | \( 1 + (0.382 + 0.923i)T \) |
| good | 2 | \( 1 - iT^{2} \) |
| 3 | \( 1 + (-1.30 + 0.541i)T + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (0.707 + 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 - 1.84iT - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.707 - 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + 0.765iT - T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.707 - 0.292i)T + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + (1.30 + 1.30i)T + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.541 + 1.30i)T + (-0.707 + 0.707i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04221147520408793392030171703, −9.534675268785707886279601381761, −8.715871933858602457484617661377, −8.359671204860221794478202646773, −7.32117303953840702311405656168, −7.00236454093950306820661350224, −4.86008765082357701053373692412, −4.09034719326582541958196153465, −3.05927409321901959606860819220, −1.76564052711637059397512304399,
2.29619988179659127039867129929, 2.94539823455328708463809651794, 4.26229484295085344182502409849, 5.45924510647367313713146517197, 6.31690999745236698112249655729, 7.84876217994446326952410143934, 8.194462307202249931953909467145, 9.284505598082989149643399363179, 10.20087598429072676245158327982, 10.54250661078813965541913611793