Properties

Label 2-595-119.10-c1-0-22
Degree $2$
Conductor $595$
Sign $0.0288 + 0.999i$
Analytic cond. $4.75109$
Root an. cond. $2.17970$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.470 + 0.0619i)2-s + (−0.749 − 1.51i)3-s + (−1.71 + 0.459i)4-s + (0.751 − 0.659i)5-s + (0.446 + 0.668i)6-s + (0.515 + 2.59i)7-s + (1.65 − 0.685i)8-s + (0.0798 − 0.104i)9-s + (−0.312 + 0.356i)10-s + (0.241 − 0.0158i)11-s + (1.98 + 2.26i)12-s + (−0.876 − 0.876i)13-s + (−0.403 − 1.18i)14-s + (−1.56 − 0.648i)15-s + (2.33 − 1.35i)16-s + (2.47 − 3.30i)17-s + ⋯
L(s)  = 1  + (−0.332 + 0.0437i)2-s + (−0.432 − 0.877i)3-s + (−0.857 + 0.229i)4-s + (0.336 − 0.294i)5-s + (0.182 + 0.272i)6-s + (0.194 + 0.980i)7-s + (0.584 − 0.242i)8-s + (0.0266 − 0.0346i)9-s + (−0.0989 + 0.112i)10-s + (0.0728 − 0.00477i)11-s + (0.572 + 0.652i)12-s + (−0.242 − 0.242i)13-s + (−0.107 − 0.317i)14-s + (−0.404 − 0.167i)15-s + (0.584 − 0.337i)16-s + (0.599 − 0.800i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0288 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0288 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(595\)    =    \(5 \cdot 7 \cdot 17\)
Sign: $0.0288 + 0.999i$
Analytic conductor: \(4.75109\)
Root analytic conductor: \(2.17970\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{595} (486, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 595,\ (\ :1/2),\ 0.0288 + 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.615373 - 0.597851i\)
\(L(\frac12)\) \(\approx\) \(0.615373 - 0.597851i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.751 + 0.659i)T \)
7 \( 1 + (-0.515 - 2.59i)T \)
17 \( 1 + (-2.47 + 3.30i)T \)
good2 \( 1 + (0.470 - 0.0619i)T + (1.93 - 0.517i)T^{2} \)
3 \( 1 + (0.749 + 1.51i)T + (-1.82 + 2.38i)T^{2} \)
11 \( 1 + (-0.241 + 0.0158i)T + (10.9 - 1.43i)T^{2} \)
13 \( 1 + (0.876 + 0.876i)T + 13iT^{2} \)
19 \( 1 + (-0.384 - 2.92i)T + (-18.3 + 4.91i)T^{2} \)
23 \( 1 + (-1.34 - 0.664i)T + (14.0 + 18.2i)T^{2} \)
29 \( 1 + (1.61 + 8.09i)T + (-26.7 + 11.0i)T^{2} \)
31 \( 1 + (-3.30 + 1.62i)T + (18.8 - 24.5i)T^{2} \)
37 \( 1 + (0.0712 - 1.08i)T + (-36.6 - 4.82i)T^{2} \)
41 \( 1 + (-2.20 + 11.0i)T + (-37.8 - 15.6i)T^{2} \)
43 \( 1 + (4.59 + 11.1i)T + (-30.4 + 30.4i)T^{2} \)
47 \( 1 + (-1.12 + 4.19i)T + (-40.7 - 23.5i)T^{2} \)
53 \( 1 + (8.77 + 11.4i)T + (-13.7 + 51.1i)T^{2} \)
59 \( 1 + (-13.4 - 1.77i)T + (56.9 + 15.2i)T^{2} \)
61 \( 1 + (-4.86 - 14.3i)T + (-48.3 + 37.1i)T^{2} \)
67 \( 1 + (-4.07 - 2.35i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (-4.23 - 2.82i)T + (27.1 + 65.5i)T^{2} \)
73 \( 1 + (6.08 + 2.06i)T + (57.9 + 44.4i)T^{2} \)
79 \( 1 + (-6.08 + 12.3i)T + (-48.0 - 62.6i)T^{2} \)
83 \( 1 + (4.57 - 11.0i)T + (-58.6 - 58.6i)T^{2} \)
89 \( 1 + (-11.8 - 3.17i)T + (77.0 + 44.5i)T^{2} \)
97 \( 1 + (4.44 - 0.884i)T + (89.6 - 37.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16535121968763227912464879082, −9.549228170673769969591258807047, −8.667059240400533164744317547039, −7.888887909534951215577225567664, −6.99674918775626411903223283576, −5.76356260872826254351907868028, −5.19104385189161491102791750788, −3.79473240225137167157354505365, −2.13711087093297916558105702571, −0.66779816329875487775820147396, 1.34255559969133805715502100801, 3.43524090309747255504231066819, 4.55006643417275095195150463029, 5.02659259568890343679009599281, 6.28959708181767616710907819831, 7.45929320198344696701700233261, 8.366569379283839708033122263195, 9.576280155657562273553814224119, 9.888174930934803461688301308671, 10.82086399415744618797083485192

Graph of the $Z$-function along the critical line