Properties

Label 2-595-119.10-c1-0-21
Degree $2$
Conductor $595$
Sign $0.979 - 0.202i$
Analytic cond. $4.75109$
Root an. cond. $2.17970$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.791 − 0.104i)2-s + (0.217 + 0.441i)3-s + (−1.31 + 0.352i)4-s + (−0.751 + 0.659i)5-s + (0.218 + 0.327i)6-s + (1.56 − 2.13i)7-s + (−2.48 + 1.02i)8-s + (1.67 − 2.18i)9-s + (−0.526 + 0.600i)10-s + (5.56 − 0.364i)11-s + (−0.442 − 0.504i)12-s + (1.76 + 1.76i)13-s + (1.01 − 1.85i)14-s + (−0.455 − 0.188i)15-s + (0.504 − 0.291i)16-s + (−3.85 + 1.45i)17-s + ⋯
L(s)  = 1  + (0.559 − 0.0736i)2-s + (0.125 + 0.255i)3-s + (−0.658 + 0.176i)4-s + (−0.336 + 0.294i)5-s + (0.0892 + 0.133i)6-s + (0.591 − 0.806i)7-s + (−0.876 + 0.363i)8-s + (0.559 − 0.729i)9-s + (−0.166 + 0.189i)10-s + (1.67 − 0.110i)11-s + (−0.127 − 0.145i)12-s + (0.489 + 0.489i)13-s + (0.271 − 0.494i)14-s + (−0.117 − 0.0486i)15-s + (0.126 − 0.0728i)16-s + (−0.935 + 0.353i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 - 0.202i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 - 0.202i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(595\)    =    \(5 \cdot 7 \cdot 17\)
Sign: $0.979 - 0.202i$
Analytic conductor: \(4.75109\)
Root analytic conductor: \(2.17970\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{595} (486, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 595,\ (\ :1/2),\ 0.979 - 0.202i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.86902 + 0.190742i\)
\(L(\frac12)\) \(\approx\) \(1.86902 + 0.190742i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (0.751 - 0.659i)T \)
7 \( 1 + (-1.56 + 2.13i)T \)
17 \( 1 + (3.85 - 1.45i)T \)
good2 \( 1 + (-0.791 + 0.104i)T + (1.93 - 0.517i)T^{2} \)
3 \( 1 + (-0.217 - 0.441i)T + (-1.82 + 2.38i)T^{2} \)
11 \( 1 + (-5.56 + 0.364i)T + (10.9 - 1.43i)T^{2} \)
13 \( 1 + (-1.76 - 1.76i)T + 13iT^{2} \)
19 \( 1 + (-0.603 - 4.58i)T + (-18.3 + 4.91i)T^{2} \)
23 \( 1 + (-4.20 - 2.07i)T + (14.0 + 18.2i)T^{2} \)
29 \( 1 + (-0.636 - 3.20i)T + (-26.7 + 11.0i)T^{2} \)
31 \( 1 + (-7.06 + 3.48i)T + (18.8 - 24.5i)T^{2} \)
37 \( 1 + (0.243 - 3.71i)T + (-36.6 - 4.82i)T^{2} \)
41 \( 1 + (-0.648 + 3.26i)T + (-37.8 - 15.6i)T^{2} \)
43 \( 1 + (1.77 + 4.29i)T + (-30.4 + 30.4i)T^{2} \)
47 \( 1 + (-0.608 + 2.27i)T + (-40.7 - 23.5i)T^{2} \)
53 \( 1 + (4.68 + 6.10i)T + (-13.7 + 51.1i)T^{2} \)
59 \( 1 + (12.7 + 1.67i)T + (56.9 + 15.2i)T^{2} \)
61 \( 1 + (0.102 + 0.302i)T + (-48.3 + 37.1i)T^{2} \)
67 \( 1 + (-9.89 - 5.71i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (11.7 + 7.87i)T + (27.1 + 65.5i)T^{2} \)
73 \( 1 + (3.52 + 1.19i)T + (57.9 + 44.4i)T^{2} \)
79 \( 1 + (0.699 - 1.41i)T + (-48.0 - 62.6i)T^{2} \)
83 \( 1 + (2.49 - 6.03i)T + (-58.6 - 58.6i)T^{2} \)
89 \( 1 + (-16.7 - 4.48i)T + (77.0 + 44.5i)T^{2} \)
97 \( 1 + (10.6 - 2.11i)T + (89.6 - 37.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82518124632294269499895344421, −9.723475814853022799811353286797, −8.991626756093512246863768054818, −8.212976127003623800745374754196, −6.93424805493692041279976218877, −6.25888419583963864767096587154, −4.72030701740693727262227296316, −3.98390249700288679038653097199, −3.51573842901724620812640873122, −1.29684671527472708411945251036, 1.23929047431419941976819238100, 2.90121429571335261557122170640, 4.46209803953180229724109169312, 4.71452233046919338625395504749, 6.02799986724183066376764920376, 6.91765938398473592329178341401, 8.189152624214309547571955788452, 8.901063557886224679335403641293, 9.469745860947718236930237792130, 10.85047949368311711496318764304

Graph of the $Z$-function along the critical line