Properties

Label 2-595-119.10-c1-0-15
Degree $2$
Conductor $595$
Sign $0.252 + 0.967i$
Analytic cond. $4.75109$
Root an. cond. $2.17970$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.67 + 0.220i)2-s + (−0.174 − 0.354i)3-s + (0.816 − 0.218i)4-s + (−0.751 + 0.659i)5-s + (0.369 + 0.553i)6-s + (−1.09 + 2.40i)7-s + (1.79 − 0.745i)8-s + (1.73 − 2.25i)9-s + (1.11 − 1.26i)10-s + (−3.64 + 0.239i)11-s + (−0.219 − 0.250i)12-s + (−2.06 − 2.06i)13-s + (1.29 − 4.26i)14-s + (0.364 + 0.151i)15-s + (−4.30 + 2.48i)16-s + (0.843 + 4.03i)17-s + ⋯
L(s)  = 1  + (−1.18 + 0.155i)2-s + (−0.100 − 0.204i)3-s + (0.408 − 0.109i)4-s + (−0.336 + 0.294i)5-s + (0.151 + 0.226i)6-s + (−0.413 + 0.910i)7-s + (0.636 − 0.263i)8-s + (0.577 − 0.752i)9-s + (0.351 − 0.401i)10-s + (−1.10 + 0.0720i)11-s + (−0.0635 − 0.0724i)12-s + (−0.573 − 0.573i)13-s + (0.347 − 1.14i)14-s + (0.0941 + 0.0390i)15-s + (−1.07 + 0.622i)16-s + (0.204 + 0.978i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(595\)    =    \(5 \cdot 7 \cdot 17\)
Sign: $0.252 + 0.967i$
Analytic conductor: \(4.75109\)
Root analytic conductor: \(2.17970\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{595} (486, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 595,\ (\ :1/2),\ 0.252 + 0.967i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.319234 - 0.246687i\)
\(L(\frac12)\) \(\approx\) \(0.319234 - 0.246687i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (0.751 - 0.659i)T \)
7 \( 1 + (1.09 - 2.40i)T \)
17 \( 1 + (-0.843 - 4.03i)T \)
good2 \( 1 + (1.67 - 0.220i)T + (1.93 - 0.517i)T^{2} \)
3 \( 1 + (0.174 + 0.354i)T + (-1.82 + 2.38i)T^{2} \)
11 \( 1 + (3.64 - 0.239i)T + (10.9 - 1.43i)T^{2} \)
13 \( 1 + (2.06 + 2.06i)T + 13iT^{2} \)
19 \( 1 + (0.347 + 2.63i)T + (-18.3 + 4.91i)T^{2} \)
23 \( 1 + (-6.16 - 3.04i)T + (14.0 + 18.2i)T^{2} \)
29 \( 1 + (0.847 + 4.26i)T + (-26.7 + 11.0i)T^{2} \)
31 \( 1 + (-1.66 + 0.821i)T + (18.8 - 24.5i)T^{2} \)
37 \( 1 + (-0.540 + 8.24i)T + (-36.6 - 4.82i)T^{2} \)
41 \( 1 + (-2.12 + 10.7i)T + (-37.8 - 15.6i)T^{2} \)
43 \( 1 + (0.644 + 1.55i)T + (-30.4 + 30.4i)T^{2} \)
47 \( 1 + (-1.45 + 5.44i)T + (-40.7 - 23.5i)T^{2} \)
53 \( 1 + (-3.60 - 4.69i)T + (-13.7 + 51.1i)T^{2} \)
59 \( 1 + (11.2 + 1.47i)T + (56.9 + 15.2i)T^{2} \)
61 \( 1 + (4.40 + 12.9i)T + (-48.3 + 37.1i)T^{2} \)
67 \( 1 + (6.33 + 3.65i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (-12.1 - 8.13i)T + (27.1 + 65.5i)T^{2} \)
73 \( 1 + (-5.36 - 1.82i)T + (57.9 + 44.4i)T^{2} \)
79 \( 1 + (-7.04 + 14.2i)T + (-48.0 - 62.6i)T^{2} \)
83 \( 1 + (-3.41 + 8.24i)T + (-58.6 - 58.6i)T^{2} \)
89 \( 1 + (-4.46 - 1.19i)T + (77.0 + 44.5i)T^{2} \)
97 \( 1 + (-4.06 + 0.808i)T + (89.6 - 37.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35357310385837319082472922002, −9.470552625313709046314873101360, −8.870590180728760575939796777936, −7.80317670629840356551446665764, −7.27615410099734479829960350311, −6.20497476518354143436128043812, −5.06327785130807033695845306321, −3.61494984081060860677725140953, −2.24144158718431701876572890612, −0.39280431984616460782305611016, 1.17749725325507117530385321922, 2.82331892924405170301621719095, 4.52319258225564903394490424984, 5.00012441661657320425123779238, 6.83673039282360902212511849868, 7.57677314135977668720120085957, 8.164493030358727000934841482008, 9.326720005933164281893310634971, 9.946038906063066112989757595515, 10.64314587678965263521149468643

Graph of the $Z$-function along the critical line