Properties

Label 2-595-1.1-c1-0-5
Degree $2$
Conductor $595$
Sign $1$
Analytic cond. $4.75109$
Root an. cond. $2.17970$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.353·2-s − 0.847·3-s − 1.87·4-s − 5-s − 0.299·6-s + 7-s − 1.36·8-s − 2.28·9-s − 0.353·10-s + 5.72·11-s + 1.58·12-s − 1.70·13-s + 0.353·14-s + 0.847·15-s + 3.26·16-s − 17-s − 0.806·18-s + 4.42·19-s + 1.87·20-s − 0.847·21-s + 2.02·22-s + 6.73·23-s + 1.15·24-s + 25-s − 0.600·26-s + 4.47·27-s − 1.87·28-s + ⋯
L(s)  = 1  + 0.249·2-s − 0.489·3-s − 0.937·4-s − 0.447·5-s − 0.122·6-s + 0.377·7-s − 0.484·8-s − 0.760·9-s − 0.111·10-s + 1.72·11-s + 0.458·12-s − 0.471·13-s + 0.0944·14-s + 0.218·15-s + 0.816·16-s − 0.242·17-s − 0.190·18-s + 1.01·19-s + 0.419·20-s − 0.184·21-s + 0.430·22-s + 1.40·23-s + 0.236·24-s + 0.200·25-s − 0.117·26-s + 0.861·27-s − 0.354·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(595\)    =    \(5 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(4.75109\)
Root analytic conductor: \(2.17970\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 595,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.057026250\)
\(L(\frac12)\) \(\approx\) \(1.057026250\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 + T \)
good2 \( 1 - 0.353T + 2T^{2} \)
3 \( 1 + 0.847T + 3T^{2} \)
11 \( 1 - 5.72T + 11T^{2} \)
13 \( 1 + 1.70T + 13T^{2} \)
19 \( 1 - 4.42T + 19T^{2} \)
23 \( 1 - 6.73T + 23T^{2} \)
29 \( 1 + 4.86T + 29T^{2} \)
31 \( 1 - 5.00T + 31T^{2} \)
37 \( 1 - 6.90T + 37T^{2} \)
41 \( 1 - 2.29T + 41T^{2} \)
43 \( 1 - 0.713T + 43T^{2} \)
47 \( 1 + 4.87T + 47T^{2} \)
53 \( 1 - 6.54T + 53T^{2} \)
59 \( 1 - 6.98T + 59T^{2} \)
61 \( 1 + 9.63T + 61T^{2} \)
67 \( 1 + 12.0T + 67T^{2} \)
71 \( 1 - 3.18T + 71T^{2} \)
73 \( 1 - 6.60T + 73T^{2} \)
79 \( 1 - 15.0T + 79T^{2} \)
83 \( 1 + 16.3T + 83T^{2} \)
89 \( 1 - 7.30T + 89T^{2} \)
97 \( 1 + 17.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.91663005362861344715796522106, −9.553519568532240214822171120263, −9.055181990251289222636087733023, −8.144780303075742819701977066710, −7.02435682491380330789149725431, −5.96665366816176924045228036993, −5.03105084863530835049732712644, −4.20672486677157284530955045698, −3.11690228917585286589374089600, −0.932778701362221718879136132942, 0.932778701362221718879136132942, 3.11690228917585286589374089600, 4.20672486677157284530955045698, 5.03105084863530835049732712644, 5.96665366816176924045228036993, 7.02435682491380330789149725431, 8.144780303075742819701977066710, 9.055181990251289222636087733023, 9.553519568532240214822171120263, 10.91663005362861344715796522106

Graph of the $Z$-function along the critical line