Properties

Label 2-595-1.1-c1-0-25
Degree $2$
Conductor $595$
Sign $1$
Analytic cond. $4.75109$
Root an. cond. $2.17970$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.78·2-s + 0.869·3-s + 5.73·4-s − 5-s + 2.41·6-s + 7-s + 10.3·8-s − 2.24·9-s − 2.78·10-s − 3.60·11-s + 4.98·12-s − 4.41·13-s + 2.78·14-s − 0.869·15-s + 17.4·16-s − 17-s − 6.24·18-s − 0.0409·19-s − 5.73·20-s + 0.869·21-s − 10.0·22-s + 5.69·23-s + 9.02·24-s + 25-s − 12.2·26-s − 4.55·27-s + 5.73·28-s + ⋯
L(s)  = 1  + 1.96·2-s + 0.501·3-s + 2.86·4-s − 0.447·5-s + 0.986·6-s + 0.377·7-s + 3.67·8-s − 0.748·9-s − 0.879·10-s − 1.08·11-s + 1.43·12-s − 1.22·13-s + 0.743·14-s − 0.224·15-s + 4.35·16-s − 0.242·17-s − 1.47·18-s − 0.00939·19-s − 1.28·20-s + 0.189·21-s − 2.13·22-s + 1.18·23-s + 1.84·24-s + 0.200·25-s − 2.40·26-s − 0.877·27-s + 1.08·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(595\)    =    \(5 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(4.75109\)
Root analytic conductor: \(2.17970\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 595,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.852095358\)
\(L(\frac12)\) \(\approx\) \(4.852095358\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 + T \)
good2 \( 1 - 2.78T + 2T^{2} \)
3 \( 1 - 0.869T + 3T^{2} \)
11 \( 1 + 3.60T + 11T^{2} \)
13 \( 1 + 4.41T + 13T^{2} \)
19 \( 1 + 0.0409T + 19T^{2} \)
23 \( 1 - 5.69T + 23T^{2} \)
29 \( 1 + 2.07T + 29T^{2} \)
31 \( 1 + 4.35T + 31T^{2} \)
37 \( 1 + 6.59T + 37T^{2} \)
41 \( 1 + 0.416T + 41T^{2} \)
43 \( 1 - 11.7T + 43T^{2} \)
47 \( 1 - 2.73T + 47T^{2} \)
53 \( 1 - 7.54T + 53T^{2} \)
59 \( 1 - 9.66T + 59T^{2} \)
61 \( 1 - 4.90T + 61T^{2} \)
67 \( 1 - 1.07T + 67T^{2} \)
71 \( 1 + 0.995T + 71T^{2} \)
73 \( 1 + 4.18T + 73T^{2} \)
79 \( 1 + 12.2T + 79T^{2} \)
83 \( 1 + 12.8T + 83T^{2} \)
89 \( 1 + 15.7T + 89T^{2} \)
97 \( 1 + 6.06T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.09799268700733679688886516224, −10.24167974647445759678603521222, −8.677441098037366025341352499051, −7.53295713230238771572361544695, −7.13185894333766576908140913292, −5.63274341309521433730396217590, −5.12226920286361295124205582422, −4.08614422688513936999119869048, −2.96834033959285961382845744688, −2.28832452360743484191079679215, 2.28832452360743484191079679215, 2.96834033959285961382845744688, 4.08614422688513936999119869048, 5.12226920286361295124205582422, 5.63274341309521433730396217590, 7.13185894333766576908140913292, 7.53295713230238771572361544695, 8.677441098037366025341352499051, 10.24167974647445759678603521222, 11.09799268700733679688886516224

Graph of the $Z$-function along the critical line